
Simulink® PLC Coder™
User's Guide

R2019b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Simulink® PLC Coder™ User's Guide
© COPYRIGHT 2010–2019 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
March 2010 Online only New for Version 1.0 (Release 2010a)
September 2010 Online only Revised for Version 1.1 (Release 2010b)
April 2011 Online only Revised for Version 1.2 (Release 2011a)
September 2011 Online only Revised for Version 1.2.1 (Release 2011b)
March 2012 Online only Revised for Version 1.3 (Release 2012a)
September 2012 Online only Revised for Version 1.4 (Release 2012b)
March 2013 Online only Revised for Version 1.5 (Release 2013a)
September 2013 Online only Revised for Version 1.6 (Release 2013b)
March 2014 Online only Revised for Version 1.7 (Release 2014a)
October 2014 Online only Revised for Version 1.8 (Release 2014b)
March 2015 Online only Revised for Version 1.9 (Release 2015a)
September 2015 Online only Revised for Version 2.0 (Release 2015b)
March 2016 Online only Revised for Version 2.1 (Release 2016a)
September 2016 Online only Revised for Version 2.2 (Release 2016b)
March 2017 Online only Revised for Version 2.3 (Release 2017a)
September 2017 Online only Revised for Version 2.4 (Release 2017b)
March 2018 Online only Revised for Version 2.5 (Release 2018a)
September 2018 Online only Revised for Version 2.6 (Release 2018b)
March 2019 Online only Revised for Version 3.0 (Release 2019a)
September 2019 Online only Revised for Version 3.1 (Release 2019b)

Getting Started
1

Simulink PLC Coder Product Description 1-2

Prepare Model for Structured Text Generation 1-3
Tasking Mode . 1-3
Solvers . 1-3
Configuring Simulink Models for Structured Text Code

Generation . 1-3
Checking System Compatibility for Structured Text Code

Generation . 1-8

Generate and Examine Structured Text Code 1-11
Generate Structured Text from the Model Window 1-11
Generate Structured Text with the MATLAB Interface 1-13
View Generated Code . 1-14

Propagate Block Descriptions to Code Comments 1-16

Files Generated with Simulink PLC Coder 1-17

Specify Custom Names for Generated Files 1-20

Import Structured Text Code Automatically 1-21
PLC IDEs That Qualify for Importing Code Automatically . . . 1-21
Generate and Automatically Import Structured Text Code . . . 1-21
Troubleshoot Automatic Import Issues 1-22

Using Simulink Test with Simulink PLC Coder 1-25
Limitations . 1-27

Simulation and Code Generation of Motion Instructions . . . 1-28
Workflow for Using Motion Instructions in Model 1-28
Simulation of the Motion API Model 1-31

v

Contents

Structured Text Code Generation . 1-33
Adding Support for Other Motion Instructions 1-33

Mapping Simulink Semantics to Structured Text
2

Generated Code Structure for Simple Simulink Subsystems
. 2-2

Generated Code Structure for Reusable Subsystems 2-4

Generated Code Structure for Triggered Subsystems 2-7

Generated Code Structure for Stateflow Charts 2-9
Stateflow Chart with Event Based Transitions 2-9
Stateflow Chart with Absolute Time Temporal Logic 2-11

Generated Code Structure for MATLAB Function Block 2-14

Generated Code Structure for Multirate Models 2-16

Generated Code Structure for Subsystem Mask Parameters
. 2-18

Global Tunable Parameter Initialization for PC WORX 2-23

Considerations for Non-Intrinsic Math Functions 2-24

Generating Ladder Diagram
3

Ladder Diagram Generation for PLC Controllers 3-2
Ladder Diagram Generation Workflow 3-4

Prepare Chart for Ladder Diagram Generation 3-6
Design PLC Application with Stateflow 3-6
Create Test Harness for Chart . 3-8

vi Contents

Generate Ladder Diagram Code from Stateflow Chart 3-11
Stateflow Chart and Ladder Logic Diagram 3-11
Generate Ladder Diagram from Chart 3-15
Generate Ladder Diagram Along with Test Bench 3-15

Import Ladder Diagram Code to CODESYS 3.5 IDE and Validate
Diagram . 3-16

Import Ladder Diagram XML . 3-16
Verify Ladder Diagram with Test Bench 3-19

Restrictions on Stateflow Chart for Ladder Diagram Generation
. 3-20

Supported Features in Ladder Diagram 3-23
Supported Ladder Elements . 3-23

Import L5X Ladder Files into Simulink 3-25
Description of the Ladder Diagram . 3-25
Import Ladder Diagram . 3-26
Limitations . 3-29

Modelling and Simulation of Ladder Diagrams in Simulink
. 3-31

Moideling AOI Prescan Routine . 3-36
Ladder Model Simulation . 3-36
Limitations . 3-38

Generating Ladder Diagram Code from Simulink 3-40
Limitations . 3-41

Generating C Code from Simulink Ladder 3-43

Verify Generated Ladder Diagram Code 3-46
Limitations . 3-49

Generating Test Bench Code
4

How Test Bench Verification Works . 4-2

vii

Integrate Generated Code with Custom Code 4-3

Import and Verify Structured Text Code 4-5
Generate, Import, and Verify Structured Text 4-5
Import and Verify Structured Text to PHOENIX CONTACT

(previously KW) Software MULTIPROG 5.0 and Phoenix
Contact PC WORX 6.0 IDEs . 4-6

Troubleshooting: Long Test Bench Code Generation Time 4-7

Verify Generated Code with Multiple Test Benches 4-9
Troubleshooting: Test Data Exceeds Target Data Size 4-11

Code Generation Reports
5

Information in Code Generation Reports 5-2

Create and Use Code Generation Reports 5-4
Generate a Traceability Report from Configuration Parameters

. 5-4
Keep the Report Current . 5-6
Trace from Code to Model . 5-7
Trace from Model to Code . 5-8
Model Web View in Code Generation Report 5-9
Generate a Static Code Metrics Report 5-13
Generate a Traceability Report from the Command Line 5-14

View Requirements Links from Generated Code 5-16

Working with the Static Code Metrics Report 5-17
Workflow for Static Code Metrics Report 5-17
Report Contents . 5-18
Function Block Information . 5-19

viii Contents

Working with Tunable Parameters in the Simulink
PLC Coder Environment

6
Block Parameters in Generated Code . 6-2

Control Appearance of Block Parameters in Generated Code
. 6-5
Configure Tunable Parameters with Simulink.Parameter Objects

. 6-5
Make Parameters Tunable Using Configuration Parameters

Dialog Box . 6-8

Controlling Generated Code Partitions
7

Generate Global Variables from Signals in Model 7-2

Control Code Partitions for Subsystem Block 7-3
Control Code Partitions Using Subsystem Block Parameters

. 7-3
One Function Block for Atomic Subsystems 7-6
One Function Block for Virtual Subsystems 7-6
Multiple Function Blocks for Nonvirtual Subsystems 7-7

Control Code Partitions for MATLAB Functions in Stateflow
Charts . 7-9

Integrating Externally Defined Identifiers
8

Integrate Externally Defined Identifiers 8-2

Integrate Custom Function Block in Generated Code 8-3

ix

IDE-Specific Considerations
9

Integrate Generated Code with Siemens IDE Project 9-2
Integrate Generated Code with Siemens SIMATIC STEP 7

Projects . 9-2
Integrate Generated Code with Siemens TIA Portal Projects

. 9-2

Use Internal Signals for Debugging in RSLogix 5000 IDE 9-4

Rockwell Automation RSLogix Considerations 9-6
Add-On Instruction and Function Blocks 9-6
Double-Precision Data Types . 9-6
Unsigned Integer Data Types . 9-6
Unsigned Fixed-Point Data Types . 9-6
Enumerated Data Types . 9-7

Considerations for Siemens IDEs . 9-8
Double-Precision Floating-Point Data Types 9-8
int8 and Unsigned Integer Types . 9-8
Unsigned Fixed-Point Data Types . 9-8
Enumerated Data Types . 9-9
INOUT Variables . 9-9

Supported Simulink and Stateflow Blocks
10

Supported Blocks . 10-2
View Supported Blocks Library . 10-2
Supported Simulink Blocks . 10-3
Supported Stateflow Blocks . 10-11
Blocks with Restricted Support . 10-11

x Contents

Limitations
11

Coder Limitations . 11-2
Current Limitations . 11-2
rand Function Support Limitations . 11-3
Workspace Parameter Data Type Limitations 11-4
Traceability Report Limitations . 11-4
Fixed-Point Data Type Limitations . 11-4
Multirate Model Limitations . 11-6
Permanent Limitations . 11-7

Configuration Parameters for Simulink PLC Coder
Models

12
PLC Coder: General . 12-2

PLC Coder: General Tab Overview . 12-3
Target IDE . 12-4
Show Full Target List . 12-6
Target IDE Path . 12-7
Code Output Directory . 12-9
Generate Testbench for Subsystem . 12-9
Include Testbench Diagnostic Code 12-10
Generate Functions Instead of Function Block 12-11
Suppress Auto-Generated Data Types 12-12
Emit Datatype Worksheet Tags for PCWorx 12-12
Aggressively Inline Structured Text Function Calls 12-13

PLC Coder: Comments . 12-15
Comments Overview . 12-16
Include Comments . 12-16
Include Block Description . 12-17
Simulink Block / Stateflow Object Comments 12-17
Show Eliminated Blocks . 12-18

PLC Coder: Optimization . 12-20
Optimization Overview . 12-21
Default Parameter Behavior . 12-21

xi

Signal Storage Reuse . 12-22
Remove Code from Floating-Point to Integer Conversions That

Wraps Out-Of-Range Values . 12-24
Generate Reusable Code . 12-24
Inline Named Constants . 12-26
Reuse MATLAB Function Block Variables 12-27
Loop Unrolling Threshold . 12-27

PLC Coder: Identifiers . 12-29
Identifiers Overview . 12-30
Use Subsystem Instance Name as Function Block Instance

Name . 12-30
Override Target Default Maximum Identifier Length 12-31
Maximum Identifier Length . 12-32
Override Target Default enum Name Behavior 12-32
Remove Top-level Subsystem ssmethod Type 12-33
Generate Logging Code . 12-34
Use the Same Reserved Names as Simulation Target 12-35
Reserved Names . 12-35
Externally Defined Identifiers . 12-36
Preserve Alias Type Names for Data Types 12-37

PLC Coder: Report . 12-39
Report Overview . 12-40
Generate Traceability Report . 12-40
Generate Model Web View . 12-41
Open Report Automatically . 12-41

External Mode
13

External Mode Logging . 13-2

Generate Structured Text Code with Logging Instrumentation
. 13-3

Use the Simulation Data Inspector to Visualize and Monitor
the Logging Data . 13-7

Set Up and Download Code to the Studio 5000 IDE 13-7
Configure RSLinx OPC Server . 13-8

xii Contents

Use PLC External Mode Commands to Stream and Display Live
Log Data . 13-9

Ladder Diagram Instructions
14

Instructions Supported in Ladder Diagram 14-2

Ladder Diagram Blocks
15

Ladder Diagram Blocks . 15-2

xiii

Getting Started

• “Simulink PLC Coder Product Description” on page 1-2
• “Prepare Model for Structured Text Generation” on page 1-3
• “Generate and Examine Structured Text Code” on page 1-11
• “Propagate Block Descriptions to Code Comments” on page 1-16
• “Files Generated with Simulink PLC Coder” on page 1-17
• “Specify Custom Names for Generated Files” on page 1-20
• “Import Structured Text Code Automatically” on page 1-21
• “Using Simulink Test with Simulink PLC Coder” on page 1-25
• “Simulation and Code Generation of Motion Instructions” on page 1-28

1

Simulink PLC Coder Product Description
Generate IEC 61131-3 Structured Text and Ladder Diagrams for PLCs and PACs

Simulink PLC Coder generates hardware-independent IEC 61131-3 Structured Text and
Ladder Diagrams from Simulink models, Stateflow® charts, and MATLAB® functions. The
Structured Text and Ladder Diagrams are generated in PLCopen XML and other file
formats supported by widely used integrated development environments (IDEs) including
3S-Smart Software Solutions CODESYS, Rockwell Automation® Studio 5000, Siemens®

TIA Portal, and OMRON® Sysmac® Studio. As a result, you can compile and deploy your
application to numerous programmable logic controller (PLC) and programmable
automation controller (PAC) devices.

Simulink PLC Coder generates test benches that help you verify the Structured Text and
Ladder Diagrams using PLC and PAC IDEs and simulation tools. It also provides code
generation reports with static code metrics and bidirectional traceability between model
and code. Support for industry standards is available through IEC Certification Kit (for
IEC 61508 and IEC 61511).

1 Getting Started

1-2

https://www.mathworks.com/products/iec-61508.html

Prepare Model for Structured Text Generation

In this section...
“Tasking Mode” on page 1-3
“Solvers” on page 1-3
“Configuring Simulink Models for Structured Text Code Generation” on page 1-3
“Checking System Compatibility for Structured Text Code Generation” on page 1-8

Tasking Mode
This step is only required if your Simulink model contains multi-rate signals. If your
Simulink model does not contain multi-rate signals, you may proceed to solver selection.

Simulink PLC Coder only generates code for single-tasking subsystems. For multi-rate
subsystems, you must first explicitly set the tasking mode to single-tasking before
selecting a solver. In the model configuration, on the Solver pane, clear the check box for
Treat each discrete rate as a separate task.

Solvers
Choose a solver for your Simulink PLC Coder model.

Model Solver Setting
Variable-step Use a continuous solver. Configure a fixed sample time for the

subsystem for which you generate code.
Fixed-step Use a discrete fixed-step solver.

Configuring Simulink Models for Structured Text Code
Generation
You must already have a model for which you want to generate and import code to a PLC
IDE. Before you use this model, perform the following steps.

1 In the Command Window, open your model.

 Prepare Model for Structured Text Generation

1-3

2 Configure the model to use the fixed-step discrete solver. Click the solver link in the
lower-right corner. The Solver information pane opens. In the pane, click the View
solver settings button to open the Solver pane of the model configuration
parameters. Under the Solver selection, set Type to Fixed-step and Solver to
discrete (no continuous states).

If your model uses a continuous solver, has a subsystem, configure a fixed sample
time for the subsystem for which you generate code.

3 Save this model as plcdemo_simple_subsystem1.
4 Create a subsystem containing the components for which you want to generate

Structured Text code.

1 Getting Started

1-4

Optionally, rename In1 and Out1 to U and Y respectively. This operation results in a
subsystem like the following figure:

 Prepare Model for Structured Text Generation

1-5

5 Save the model with the new subsystem.
6 In the top-level model, right-click the Subsystem block and select Block Parameters

(Subsystem).
7 In the resulting block dialog box, select Treat as atomic unit.

1 Getting Started

1-6

8 Click OK.
9 Simulate your model.
10 Save your model. In later procedures, you can use either this model, or the

plcdemo_simple_subsystem model that comes with your software.

You are now ready to:

 Prepare Model for Structured Text Generation

1-7

• Set up your subsystem to generate Structured Text code. See “Checking System
Compatibility for Structured Text Code Generation” on page 1-8.

• Generate Structured Text code for your IDE. See “Generate and Examine Structured
Text Code” on page 1-11.

Checking System Compatibility for Structured Text Code
Generation
You must already have a model that you have configured to work with the Simulink PLC
Coder software.

1 In your model, navigate to the subsystem for which you want to generate code.
2 Right-click that Subsystem block and select PLC Code > Check Subsystem

Compatibility.

The coder checks whether your model satisfies the Simulink PLC Coder criteria.
When the checking is complete, a View diagnostics hyperlink appears at the bottom
of the model window. Click this hyperlink to open the Diagnostic Viewer window.

If the subsystem is not atomic, right-click the Subsystem block and select PLC Code,
which prompts Enable “Treat as atomic unit” to generate code.

1 Getting Started

1-8

This command opens the block parameter dialog box. Select Treat as atomic unit.

 Prepare Model for Structured Text Generation

1-9

You are now ready to generate Structured Text code for your IDE. See “Generate and
Examine Structured Text Code” on page 1-11.

1 Getting Started

1-10

Generate and Examine Structured Text Code
In this section...
“Generate Structured Text from the Model Window” on page 1-11
“Generate Structured Text with the MATLAB Interface” on page 1-13
“View Generated Code” on page 1-14

Generate Structured Text from the Model Window
You must already have set up your environment and Simulink model to use the Simulink
PLC Coder software to generate Structured Text code. If you have not yet done so, see
“Prepare Model for Structured Text Generation” on page 1-3.

1 If you do not have the plcdemo_simple_subsystem model open, open it now.
2 Right-click the Subsystem block and select PLC Code > Options.

The Configuration Parameters dialog box is displayed.

 Generate and Examine Structured Text Code

1-11

3 On the PLC Code Generation pane, select an option from the Target IDE list, for
example, 3S CoDeSys 2.3.

The default Target IDE list displays the full set of supported IDEs. To see a reduced
subset of the target IDEs supported by Simulink PLC Coder, disable the option Show
full target list. To customize this list, use the plccoderpref function.

4 Click Apply.
5 Click Generate code.

This button:

1 Getting Started

1-12

• Generates Structured Text code (same as the PLC Code > Generate Code for
Subsystem option)

• Stores generated code in model_name.exp (for example,
plcdemo_simple_subsystem.exp)

When code generation is complete, a View diagnostics hyperlink appears at the
bottom of the model window. Click this hyperlink to open the Diagnostic Viewer
window.

This window has links that you can click to open the associated files. For more
information, see “Files Generated with Simulink PLC Coder” on page 1-17.

Generate Structured Text with the MATLAB Interface
You can generate Structured Text code for a subsystem in the Command Window with the
plcgeneratecode function. You must have already configured the parameters for the
model or, alternatively, you can use the default settings.

For example, to generate code from the SimpleSubsystem subsystem in the
plcdemo_simple_subsystem model:

1 Open the plcdemo_simple_subsystem model:

plcdemo_simple_subsystem

 Generate and Examine Structured Text Code

1-13

2 Open the Configuration Parameters dialog box using the plcopenconfigset
function:

plcopenconfigset('plcdemo_simple_subsystem/SimpleSubsystem')
3 Select a target IDE.
4 Configure the subsystem as described in “Prepare Model for Structured Text

Generation” on page 1-3.
5 Generate code for the subsystem:

generatedfiles = plcgeneratecode('plcdemo_simple_subsystem/SimpleSubsystem')

When using plcgeneratecode for code generation, all diagnostic messages are printed
to the MATLAB command window.

View Generated Code
After generating the code, you can view it in the MATLAB Editor. For a description of how
the generated code for the Simulink components map to Structured Text components, see
“PLC Code Generation Basics”. In addition, note the following:

• Matrix data types: The coder converts matrix data types to single-dimensional vectors
(column-major) in the generated Structured Text.

• Generated code header: If your model has author names, creation dates, and model
descriptions, the generated code contains these items in the header comments. The
header also lists fundamental sample times for the model and the subsystem block for
which you generate code.

• Code comments: You can choose to propagate block descriptions to comments in
generated code. See “Propagate Block Descriptions to Code Comments” on page 1-
16.

The figure illustrates generated code for the CoDeSys Version 2.3 PLC IDE. Generated
code for other platforms, such as Rockwell Automation RSLogix™ 5000, is in XML or
other format and looks different.

1 Getting Started

1-14

If you are confident that the generated Structured Text is good, optionally change your
workflow to automatically generate and import code to the target IDE. For more
information, see “Import Structured Text Code Automatically” on page 1-21.

 Generate and Examine Structured Text Code

1-15

Propagate Block Descriptions to Code Comments
You can propagate block descriptions from the model to comments in your generated
code.

For specific IDEs, you can propagate the block descriptions into specific XML tags in the
generated code. The IDEs use the tags to create a readable description of the function
blocks in the IDE.

• For Rockwell Automation RSLogix 5000 AOI/routine target IDEs, the coder propagates
block descriptions from the model into the L5X AdditionalHelpText XML tag. The
IDE can then import the tag as part of AOI and routine definition in the generated
code.

• For CoDeSys 3.5 IDE, the coder propagates block descriptions from the model into the
documentation XML tag. When you import the generated code into the CoDeSys 3.5
IDE, the IDE parses the content of this tag and provides readable descriptions of the
function blocks in your code.

To propagate block descriptions to comments:

1 Enter a description for the block.

a Right-click the block for which you want to write a description and select
Properties.

b On the General tab, enter a block description.
2 Before code generation, specify that block descriptions must propagate to code

comments.

a Right-click the subsystem for which you are generating code and select PLC
Code > Options.

b Select the option Include block description on page 12-17.

Your block description appears as comments in the generated code.

1 Getting Started

1-16

Files Generated with Simulink PLC Coder
The Simulink PLC Coder software generates Structured Text code and stores it according
to the target IDE platform. These platform-specific paths are default locations for the
generated code. To customize generated file names, see “Specify Custom Names for
Generated Files” on page 1-20.

Platform Generated Files
3S-Smart
Software
Solutions
CoDeSys 2.3

current_folder\plcsrc\model_name.exp — Structured Text file for
importing to the target IDE.

3S-Smart
Software
Solutions
CoDeSys 3.3

current_folder\plcsrc\model_name.xml — Structured Text file for
importing to the target IDE.

3S-Smart
Software
Solutions
CoDeSys 3.5

current_folder\plcsrc\model_name.xml — Structured Text file for
importing to the target IDE.

B&R
Automation
Studio® IDE

The following files in current_folder\plcsrc\model_name — Files for
importing to the target IDE:

• Package.pkg — (If test bench is generated) Top-level package file for function
blocks library and test bench main program in XML format.

In the main folder (if test bench is generated):

• IEC.prg — Test bench main program definition file in XML format.
• mainInit.st — Text file. Test bench init program file in Structured Text.
• mainCyclic.st — Text file. Test bench cyclic program file in Structured Text.
• mainExit.st — Text file. Test bench exit program file in Structured Text.
• main.typ — Text file. Main program type definitions file in Structured Text.
• main.var — Text file. Main program variable definitions file in Structured

Text.

 Files Generated with Simulink PLC Coder

1-17

Platform Generated Files
Beckhoff®

TwinCAT® 2.11
current_folder\plcsrc\model_name.exp — Structured Text file for
importing to the target IDE.

Beckhoff
TwinCAT 3

current_folder\plcsrc\model_name.xml — Structured Text file for
importing to the target IDE.

KW-Software
MULTIPROG®

5.0

current_folder\plcsrc\model_name.xml — Structured Text file, in XML
format, for importing to the target IDE.

Phoenix
Contact® PC
WORX™ 6.0

current_folder\plcsrc\model_name.xml — Structured Text file, in XML
format, for importing to the target IDE.

Rockwell
Automation
Studio 5000
IDE: AOI

current_folder\plcsrc\model_name.L5X — (If test bench is generated)
Structured Text file for importing to the target IDE using Add-On Instruction (AOI)
constructs. This file is in XML format and contains the generated Structured Text
code for your model.

Rockwell
Automation
Studio 5000
IDE: Routine

current_folder\plcsrc\model_name.L5X — (If test bench is generated)
Structured Text file for importing to the target IDE using routine constructs. This
file is in XML format and contains the generated Structured Text code for your
model.

In current_folder\plcsrc\model_name (if test bench is not generated), the
following files are generated:

• subsystem_block_name.L5X — Structured Text file in XML format. Contains
program tag and UDT type definitions and the routine code for the top-level
subsystem block.

• routine_name.L5X — Structured Text files in XML format. Contains routine
code for other subsystem blocks.

Rockwell
Automation
RSLogix 5000
IDE: AOI

current_folder\plcsrc\model_name.L5X — (If test bench is generated)
Structured Text file for importing to the target IDE using Add-On Instruction (AOI)
constructs. This file is in XML format and contains the generated Structured Text
code for your model.

1 Getting Started

1-18

Platform Generated Files
Rockwell
Automation
RSLogix 5000
IDE: Routine

current_folder\plcsrc\model_name.L5X — (If test bench is generated)
Structured Text file for importing to the target IDE using routine constructs. This
file is in XML format and contains the generated Structured Text code for your
model.

In current_folder\plcsrc\model_name (if test bench is not generated), the
following files are generated:

• subsystem_block_name.L5X — Structured Text file in XML format. Contains
program tag and UDT type definitions and the routine code for the top-level
subsystem block.

• routine_name.L5X — Structured Text files in XML format. Contains routine
code for other subsystem blocks.

Siemens
SIMATIC®

STEP® 7 IDE

current_folder\plcsrc\model_name\model_name.scl — Structured Text
file for importing to the target IDE.

current_folder\plcsrc\model_name\model_name.asc — (If test bench is
generated) Text file. Structured Text file and symbol table for generated test
bench code.

Siemens TIA
Portal IDE

current_folder\plcsrc\model_name\model_name.scl — Structured Text
file for importing to the target IDE.

Generic current_folder\plcsrc\model_name.st — Pure Structured Text file. If your
target IDE is not available for the Simulink PLC Coder product, consider
generating and importing a generic Structured Text file.

PLCopen XML current_folder\plcsrc\model_name.xml — Structured Text file formatted
using the PLCopen XML standard. If your target IDE is not available for the
Simulink PLC Coder product, but uses a format like this standard, consider
generating and importing a PLCopen XML Structured Text file.

Rexroth
IndraWorks

current_folder\plcsrc\model_name.xml — Structured Text file for
importing to the target IDE.

OMRON
Sysmac Studio

current_folder\plcsrc\model_name.xml — Structured Text file for
importing to the target IDE.

 Files Generated with Simulink PLC Coder

1-19

Specify Custom Names for Generated Files
The Simulink PLC Coder software generates Structured Text code and stores it according
to the target IDE platform. These platform-specific paths are default locations for the
generated code. For more information, see “Files Generated with Simulink PLC Coder” on
page 1-17.

To specify a different name for the generated files, set the Function name options
parameter in the Subsystem block:

1 Right-click the Subsystem block for which you want to generate code and select
Subsystem Parameters.

2 In the Main tab, select the Treat as atomic unit check box.
3 Click the Code Generation tab.
4 From the Function Packaging parameter list, select either Nonreusable

function or Reusable Function.

These options enable the Function name options and File name options
parameters.

5 Select the option that you want to use for generating the file name.

Function name options Generated File Name
Auto Default. Uses the model name, as listed

in “Prepare Model for Structured Text
Generation” on page 1-3, for example,
plcdemo_simple_subsystem.

Use subsystem name Uses the subsystem name, for example,
SimpleSubsystem.

User specified Uses the custom name that you specify
in the Function name parameter, for
example, SimpleSubsystem.

1 Getting Started

1-20

Import Structured Text Code Automatically
In this section...
“PLC IDEs That Qualify for Importing Code Automatically” on page 1-21
“Generate and Automatically Import Structured Text Code” on page 1-21
“Troubleshoot Automatic Import Issues” on page 1-22

PLC IDEs That Qualify for Importing Code Automatically
If you are confident that your model produces Structured Text that does not require visual
examination, you can generate and automatically import Structured Text code to one of
the following target PLC IDEs:

• 3S-Smart Software Solutions CoDeSys Version 2.3
• PHOENIX CONTACT (previously KW) Software MULTIPROG Version 5.0 or 5.50
• Phoenix Contact PC WORX Version 6.0
• Rockwell Automation RSLogix 5000 Version 17, 18, or 19

For the Rockwell Automation RSLogix routine format, you must generate testbench
code for automatic import and verification.

• Siemens SIMATIC STEP 7 Version 5.4 only for the following versions:

• Siemens SIMATIC Manager: Version V5.4+SP5+HF1, Revision K5.4.5.1
• S7-SCL: Version V5.3+SP5, Revision K5.3.5.0
• S7-PLCSIM: Version V5.4+SP3, Revision K5.4.3.0

Working with the default CoDeSys Version 2.3 IDE should require additional changes for
only the PHOENIX CONTACT (previously KW) Software MULTIPROG 5.0/5.50 and
Phoenix Contact PC WORX 6.0 IDE. For information about automatically importing
Structured Text code to these IDEs, see “Import and Verify Structured Text to PHOENIX
CONTACT (previously KW) Software MULTIPROG 5.0 and Phoenix Contact PC WORX 6.0
IDEs” on page 4-6.

Generate and Automatically Import Structured Text Code
You can generate and automatically import Structured Text code. Before you start:

 Import Structured Text Code Automatically

1-21

• In the target IDE, save your current project.
• Close open projects.
• Close the target IDE and target IDE-related windows.

Note While the automatic import process is in progress, do not use your mouse or
keyboard. Doing so might disrupt the process. When the process completes, you can
resume normal operations.

You must have already installed your target PLC IDE in a default location, and it must use
the CoDeSys V2.3 IDE. If you installed the target PLC IDE in a nondefault location, open
the Configuration Parameters dialog box. In the PLC Coder node, set the Target IDE
Path parameter to the installation folder of your PLC IDE. See “Target IDE Path” on page
12-7.

1 If it is not already started, open the Command Window.
2 Open the plcdemo_simple_subsystem model.
3 Right-click the Subsystem block and select PLC Code > Generate and Import

Code for Subsystem.

The software:

a Generates the code.
b Starts the target IDE interface.
c Creates a project.
d Imports the generated code to the target IDE.

If you want to generate, import, and run the Structured Text code, see “Import and Verify
Structured Text Code” on page 4-5.

Troubleshoot Automatic Import Issues
Following are guidelines, hints, and tips for questions or issues you might have while
using the automatic import capability of the Simulink PLC Coder product.

Supported Target IDEs

The Simulink PLC Coder software supports only the following versions of target IDEs for
automatic import and verification:

1 Getting Started

1-22

• 3S-Smart Software Solutions CoDeSys Version 2.3
• PHOENIX CONTACT (previously KW) Software MULTIPROG 5.0 or 5.50 (English)
• Phoenix Contact PC WORX 6.0 (English)
• Rockwell Automation RSLogix 5000 Series Version 17, 18, 19 (English)

For the Rockwell Automation RSLogix routine format, you must generate testbench
code for automatic import and verification.

• Siemens SIMATIC STEP 7 Version 5.4 (English and German)

Note Some antivirus softwares falsely identify the executables that implement the
automatic import feature as malware. This can be safely ignored. For more information,
see “Issues with Anti-Virus Software”.

Unsupported Target IDEs

The following target IDEs currently do not support automatic import. For these target
IDEs, the automatic import menu items (Generate and Import Code for Subsystem
and Generate, Import, and Verify Code for Subsystem) are disabled.

• 3S-Smart Software Solutions CoDeSys Version 3.3
• 3S-Smart Software Solutions CoDeSys Version 3.5
• B&R Automation Studio IDE
• Beckhoff TwinCAT 2.11, 3
• Generic
• PLCopen
• Rockwell Automation Studio 5000 Logix Designer (both routine and AOI constructs)

Possible Automatic Import Issues

When the Simulink PLC Coder software fails to finish automatically importing for the
target IDE, it reports an issue in a message dialog box. To remedy the issue, try the
following actions:

• Check that the coder supports the target IDE version and language setting
combination.

• Check that you have specified the target IDE path in the subsystem Configuration
Parameters dialog box.

 Import Structured Text Code Automatically

1-23

• Close currently open projects in the target IDE, close the target IDE completely, and
try again.

• Some target IDEs can have issues supporting the large data sets the coder test bench
generates. In these cases, try to shorten the simulation cycles to reduce the data set
size, then try the automatic import again.

• Other applications can interfere with automatic importing to a target IDE. Try to close
other unrelated applications on the system and try the automatic import again.

1 Getting Started

1-24

Using Simulink Test with Simulink PLC Coder
You can use Simulink Test™ with Simulink PLC Coder to author, manage, and execute
simulation-based tests of the generated code.

1 If you do not have the plcdemo_simple_subsystem model open, open it now.
2 Create a signal build test harness for the subsystem as shown. To create a test

harness for a subsystem, select the subsystem and select Analysis > Test Harness
> Create for <subsystem name>. Set test harness properties using the Create
Test Harness dialog box.

3 Right-click the Subsystem block and select PLC Code > Options. The Configuration
Parameters dialog box is displayed.

 Using Simulink Test with Simulink PLC Coder

1-25

4 On the PLC Code Generation pane, select a target and enable the Generate
testbench for subsystemoption.

5 Click Apply.
6 Right-click and select Generate code for the subsystem from the Test Harness

Window. The generated code contains multiple test-benches from the signal builder.
You can run this code in the PLC emulator to make sure it matches simulation.

1 Getting Started

1-26

Limitations
• If you use anything other than a signal builder block in the test harness, you must

create a top-level atomic subsystem in the test harness that contains both the
subsystem under test and the testing blocks (for example, say test sequence block)
and generate code for this subsystem.

• Simulink PLC Coder does not yet support verify keyword in the test sequence block
• Simulink PLC Coder does support duration keyword in the test sequence block but it

requires the generate code to be run with the same sample rate as in the Simulink
model

 Using Simulink Test with Simulink PLC Coder

1-27

Simulation and Code Generation of Motion Instructions
The Simulink PLC Coder software supports a workflow for the behavioral simulation and
structured text code generation for the Rockwell Automation RSLogix motion control
instructions.

Workflow for Using Motion Instructions in Model
This workflow uses the “Simulating and Generating Structured Text Code for Rockwell
Motion Instructions” example in the plccoderdemos folder. This example provides a
template that you can use with motion instructions. It contains the following files:

Name Description
MotionControllerExample.sl
x

Simulink model containing an example Stateflow
chart for modeling motion instructions.

DriveLibrary.slx Simulink library with a Stateflow chart that is used
for modeling a real world drive (axis) with
trajectories, delays, and other parameters.

MotionTypesForSim.mat MAT-file containing the bus data types for the
AXIS_SERVO_DRIVE and MOTION_INSTRUCTION.
The MotioncontrollerExample.slx model loads
the content of the MAT-file into the workspace. If you
are creating a new model you must load this MAT-file
for simulation and code generation.

Trajectory.m MATLAB class file for implementing trapezoidal
velocity profile. This is used to simulate the behavior
of the Motion Axis Move (MAM) command.

MotionApiStubs.slx Supporting file for code generation.
MotionInstructionType.m MATLAB enumeration class file that represents the

type of motion API calls. For example, isMAM,
isMSF. This file is used only during simulation.

plc_keyword_hook.m Helper file to avoid name mangling and reserved
keyword limitations.

plcgeneratemotionapicode.p Function that transforms the chart in the model to
make it suitable for code generation.

Before you start, copy the files in the example to the current working folder.

1 Getting Started

1-28

1 Create a Simulink model with a Stateflow chart.
2 Load the bus data types from the MotionTypesForSim.mat file into the workspace

by using the load function.
3 Create data that represents the drive and motion instructions for the chart. For

information on adding data to Stateflow charts, see “Add Stateflow Data” (Stateflow)

4 Copy the drive(axis) model from the DriveLibrary.slx file into the Stateflow
chart. The drive model must be copied as an atomic subchart.

The drive logic Stateflow chart models a real world drive with parameters such as
trajectory and delay. Any drive subchart has the following data:

 Simulation and Code Generation of Motion Instructions

1-29

5 Use the Subchart Mappings dialog to map the drive subchart data store memory
data with the local data of the appropriate names in the container chart. For more
information, see “Map Variables for Atomic Subcharts and Boxes” (Stateflow). The
“Simulating and Generating Structured Text Code for Rockwell Motion Instructions”
example has the following mapping gor Drive1.

6 Use graphical functions to create motion API instructions. For example, for the
Motion Servo On (MSO) instruction:

1 Getting Started

1-30

The mapping between the inputs to the outputs is through "pass by reference".
7 Create the controller logic in another subchart and use the motion instructions

created in the previous step in the chart. Controller1 in the example has the
following Stateflow chart.

Simulation of the Motion API Model
You can run simulation on the model containing the motion instructions and see the state
changes the controller chart and the Drive subchart. You can also log the local data of
the chart such as AXIS and the MOTION_INSTRUCTION variables For more information,
see “Configure States and Data for Logging” (Stateflow).

 Simulation and Code Generation of Motion Instructions

1-31

At the end of simulation, the logged signals are captured in the base workspace as a
variable called logsout. This can be imported into Simulation Data Inspector.

1 Getting Started

1-32

Structured Text Code Generation
Use the plcgeneratemotionapicode function to prepare the model for code
generation and generate structured text code. The plcgeneratemotionapicode takes
the full path name of subsystem containing the original chart as an input and creates a
new model from which structured text code can be generated.

Adding Support for Other Motion Instructions
The plcdemo_motion_api_rockwell example has support for only the following
motion instructions:

 Simulation and Code Generation of Motion Instructions

1-33

• MAM
• MAS
• MSF
• MSO

To use other Rockwell Automation RSLogix motion instructions in the model (For
example, Motion Axis Jog (MAJ)), you must perform the following steps:

1 Because the MAJ instruction is similar to MAM instruction, create a bus for MAJ with
elements similar to that of MAM.

2 Update the MotionTypesForSim.mat file with the new definitions for MAJDATA and
AXIS_SERVO_DRIVE.

3 In the Stateflow chart, create a graphical function representing MAJ (similar to MAM).
Assign the appropriate inputs and outputs.

4 Create single transition with commands to set the output values.

1 Getting Started

1-34

5 Remove the transition commands and copy the graphical function to the
MotionApiStubs.slx.

 Simulation and Code Generation of Motion Instructions

1-35

6 Update the functionName variable in the getDriveTemplateNames.m file to
include MAJ.

1 Getting Started

1-36

7 Update the DriveLibrary.slx file to respond to MAJ calls during simulation.

• Create isMAJ graphical function (similar to isMAM).

 Simulation and Code Generation of Motion Instructions

1-37

• Update the Drive subchart to respond to MAJ by implementing required
transitions etc (similar to MAM as shown).

1 Getting Started

1-38

8 Create or update the controller logic as required. Create a new state and add MAJ
instruction to it (similar to the MAM)

 Simulation and Code Generation of Motion Instructions

1-39

9 Perform simulation and generate code using the steps described earlier.

1 Getting Started

1-40

Mapping Simulink Semantics to
Structured Text

• “Generated Code Structure for Simple Simulink Subsystems” on page 2-2
• “Generated Code Structure for Reusable Subsystems” on page 2-4
• “Generated Code Structure for Triggered Subsystems” on page 2-7
• “Generated Code Structure for Stateflow Charts” on page 2-9
• “Generated Code Structure for MATLAB Function Block” on page 2-14
• “Generated Code Structure for Multirate Models” on page 2-16
• “Generated Code Structure for Subsystem Mask Parameters” on page 2-18
• “Global Tunable Parameter Initialization for PC WORX” on page 2-23
• “Considerations for Non-Intrinsic Math Functions” on page 2-24

2

Generated Code Structure for Simple Simulink
Subsystems

This topic assumes that you have generated Structured Text code from a Simulink model.
If you have not yet done so, see “Generate Structured Text from the Model Window” on
page 1-11.

The example in this topic shows generated code for the CoDeSys Version 2.3 IDE.
Generated code for other IDE platforms looks different.

1 If you do not have the plcdemo_simple_subsystem.exp file open, open it in the
MATLAB editor. In the folder that contains the file, type:

edit plcdemo_simple_subsystem.exp

A file like the following is displayed.

The following figure illustrates the mapping of the generated code to Structured Text
components for a simple Simulink subsystem. The Simulink subsystem corresponds
to the Structured Text function block, Subsystem.

Note The coder maps alias data types to the base data type in the generated code.

2 Mapping Simulink Semantics to Structured Text

2-2

Input parameter for
subsystem method
type

Subsystem
inputs and
outputs

Subsystem
State (DWork)
variables

Initialize and
step methods

Inlined
parameters

SubsystemAtomic subsystem name

2 Inspect this code as you ordinarily do for PLC code. Check the generated code.

Note The Simulink model for plcdemo_simple_subsystem does not contain signal
names at the input or output of the SimpleSubsystem block. So the generated code has
the port names U and Y as the input and output variable names of the FUNCTION_BLOCK.
However, even if your model does contain signal names, coder only uses port names in
the generated code.

 Generated Code Structure for Simple Simulink Subsystems

2-3

Generated Code Structure for Reusable Subsystems
This topic assumes that you have generated Structured Text code from a Simulink model.
If you have not yet done so, see “Generate Structured Text from the Model Window” on
page 1-11.

The example in this topic shows generated code for the CoDeSys Version 2.3 IDE.
Generated code for other IDE platforms looks different.

1 Open the plcdemo_reusable_subsystem model.
2 Right-click the Subsystem block and select PLC Code > Generate Code for

Subsystem.

The Simulink PLC Coder software generates Structured Text code and places it in
current_folder/plcsrc/plcdemo_reusable_subsystem.exp.

3 If you do not have the plcdemo_reusable_subsystem.exp file open, open it in the
MATLAB editor.

The following figure illustrates the mapping of the generated code to Structured Text
components for a reusable Simulink subsystem. This graphic contains a copy of the
hierarchical subsystem, ReusableSubsystem. This subsystem contains two identical
subsystems, S1 and S2. This configuration enables code reuse between the two
instances (look for the ReusableSubsystem string in the code).

2 Mapping Simulink Semantics to Structured Text

2-4

matlab:plcdemo_reusable_subsystem

4 Examine the generated Structured Text code. The code defines FUNCTION_BLOCK S1
once.

Look for two instance variables that correspond to the two instances declared inside
the parent FUNCTION_BLOCK ReusableSubsystem (i0_S1: S1 and i1_S1: S1).
The code invokes these two instances separately by passing in different inputs. The
code invokes the outputs per the Simulink execution semantics.

5 For IEC 61131-3 compatible targets, the non-step and the output ssMethodType do
not use the output variables of the FUNCTION_BLOCK. Therefore, the generated
Structured Text code for SS_INITIALIZE does not contain assignment statements
for the outputs Y1 and Y2.

 Generated Code Structure for Reusable Subsystems

2-5

Note This optimization is applicable only to IEC 61131-3 compatible targets.

2 Mapping Simulink Semantics to Structured Text

2-6

Generated Code Structure for Triggered Subsystems
This topic assumes that you have generated Structured Text code from a Simulink model.
If you have not yet done so, see “Generate Structured Text from the Model Window” on
page 1-11.

The example in this topic shows generated code for the CoDeSys Version 2.3 PLC IDE.
Generated code for other IDE platforms looks different.

1 Open the plcdemo_cruise_control model.
2 Right-click the Controller subsystem block and select PLC Code > Generate Code

for Subsystem.

The Simulink PLC Coder software generates Structured Text code and places it in
current_folder/plcsrc/plcdemo_cruise_control.exp.

3 If you do not have the plcdemo_cruise_control.exp file open, open it in the
MATLAB editor.

The following figure illustrates the mapping of the generated code to Structured Text
components for a triggered Simulink subsystem. The first part of the figure shows the
Controller subsystem and the triggered Stateflow chart that it contains. The second
part of the figure shows excerpts of the generated code. Notice the zero-crossing
functions that implement the triggered subsystem semantics.

Subsystem Triggered Stateflow Chart

 Generated Code Structure for Triggered Subsystems

2-7

matlab:plcdemo_cruise_control

Generated code

Triggered subsystem semantics

2 Mapping Simulink Semantics to Structured Text

2-8

Generated Code Structure for Stateflow Charts
The examples in this topic show generated code for the CoDeSys Version 2.3 PLC IDE.
Generated code for other IDE platforms looks different.

Stateflow Chart with Event Based Transitions
Generate code for the Stateflow chart ControlModule in the model
plcdemo_stateflow_controller. Here is the chart:

 Generated Code Structure for Stateflow Charts

2-9

matlab:plcdemo_stateflow_controller

You can map the states and transitions in the chart to the generated code. For instance,
the transition from the state Aborting to Aborted appears in the generated code as:

2 Mapping Simulink Semantics to Structured Text

2-10

ControlModule_IN_Aborting:
 rtb_out := sABORTING;
 (* During 'Aborting': '<S1>:11' *)
 (* Graphical Function 'is_active': '<S1>:73' *)
 (* Transition: '<S1>:75' *)
 IF NOT drive_state.Active THEN
 (* Transition: '<S1>:31' *)
 is_c2_ControlModule := ControlModule_IN_Aborted;
 (* Entry 'Aborted': '<S1>:12' *)
 rtb_out := sABORTED;
 (* Graphical Function 'stop_drive': '<S1>:88' *)
 (* Transition: '<S1>:90' *)
 driveOut.Start := FALSE;
 driveOut.Stop := TRUE;
 driveOut.Reset := FALSE;
 END_IF;

For more information on the inlining of functions such as start_drive, stop_drive,
and reset_drive in the generated code, see “Control Code Partitions for MATLAB
Functions in Stateflow Charts” on page 7-9.

Stateflow Chart with Absolute Time Temporal Logic
Generate code for the Stateflow chart Temporal in the model plcdemo_sf_abs_time.
Here is the chart:

 Generated Code Structure for Stateflow Charts

2-11

matlab:plcdemo_stateflow_controller

You can map states and transitions in the chart to the generated code. For instance, the
transition from state B to C appears as:
 Temporal_IN_B:
 (* During 'B': '<S1>:2' *)
 temporalCounter_i1(timerAction := 2, maxTime := 4000);
 IF temporalCounter_i1.done THEN
 (* Transition: '<S1>:8' *)
 is_c2_Temporal := Temporal_IN_C;
 temporalCounter_i1(timerAction := 1, maxTime := 0);
 ELSE
 (* Outport: '<Root>/pulse' *)
 pulse := 2.0;
 END_IF;

The variable temporalCounter_i1 is an instance of the function block
PLC_CODER_TIMER defined as:

2 Mapping Simulink Semantics to Structured Text

2-12

FUNCTION_BLOCK PLC_CODER_TIMER
VAR_INPUT
 timerAction: INT;
 maxTime: DINT;
END_VAR
VAR_OUTPUT
 done: BOOL;
END_VAR
VAR
 plcTimer: TON;
 plcTimerExpired: BOOL;
END_VAR
CASE timerAction OF
 1:
 (* RESET *)
 plcTimer(IN:=FALSE, PT:=T#0ms);
 plcTimerExpired := FALSE;
 done := FALSE;
 2:
 (* AFTER *)
 IF (NOT(plcTimerExpired)) THEN
 plcTimer(IN:=TRUE, PT:=DINT_TO_TIME(maxTime));
 END_IF;
 plcTimerExpired := plcTimer.Q;
 done := plcTimerExpired;
 3:
 (* BEFORE *)
 IF (NOT(plcTimerExpired)) THEN
 plcTimer(IN:=TRUE, PT:=DINT_TO_TIME(maxTime));
 END_IF;
 plcTimerExpired := plcTimer.Q;
 done := NOT(plcTimerExpired);
END_CASE;
END_FUNCTION_BLOCK

 Generated Code Structure for Stateflow Charts

2-13

Generated Code Structure for MATLAB Function Block
This topic assumes that you have generated Structured Text code from a Simulink model.
If you have not yet done so, see “Generate Structured Text from the Model Window” on
page 1-11.

The example in this topic shows generated code for the CoDeSys Version 2.3 IDE.
Generated code for other IDE platforms looks different.

1 Open the plcdemo_eml_tankcontrol model.
2 Right-click the TankControl block and select PLC Code > Generate Code for

Subsystem.

The Simulink PLC Coder software generates Structured Text code and places it in
current_folder/plcsrc/plcdemo_eml_tankcontrol.exp.

3 If you do not have the plcdemo_eml_tankcontrol.exp file open, open it in the
MATLAB editor.

The following figure illustrates the mapping of the generated code to Structured Text
components for a Simulink Subsystem block that contains a MATLAB Function block.
The coder tries to perform inline optimization on the generated code for MATLAB
local functions. If the coder determines that it is more efficient to leave the local
function as is, it places the generated code in a Structured Text construct called
FUNCTION.

4 Examine the generated Structured Text code.

2 Mapping Simulink Semantics to Structured Text

2-14

matlab:plcdemo_eml_tankcontrol

Generated code

for MATLAB

subfunctions

MATLAB code

 Generated Code Structure for MATLAB Function Block

2-15

Generated Code Structure for Multirate Models
This example assumes that you have generated Structured Text code from a Simulink
model. If you have not yet done so, see “Generate Structured Text from the Model
Window” on page 1-11.

The example in this topic shows generated code for the CoDeSys Version 2.3 IDE.
Generated code for other IDE platforms looks different.

1 Open the plcdemo_multirate model. This model has two sample rates.
2 Right-click the SimpleSubsystem block and select PLC Code > Generate Code for

Subsystem.

The Simulink PLC Coder software generates Structured Text code and places it in
current_folder/plcsrc/plcdemo_multirate.exp.

3 If you do not have the plcdemo_multirate.exp file open, open it in the MATLAB
editor and examine the Structured Text code.

The generated code contains a global time step counter variable:

VAR_GLOBAL
 plc_ts_counter1: DINT;
END_VAR

In this example, there are two rates, and the fast rate is twice as fast as the slow rate,
so the time step counter counts to 1, then resets:

IF plc_ts_counter1 >= 1 THEN
 plc_ts_counter1 := 0;
ELSE
 plc_ts_counter1 := plc_ts_counter1 + 1;
END_IF;

The generated code for blocks running at slower rates executes conditionally based
on the corresponding time step counter values. In this example, the generated code
for Gain1, Unit Delay1, and Sum1 executes every other time step, when
plc_ts_counter1 = 0, because those blocks run at the slow rate. The generated
code for Gain, Unit Delay, Sum, and Sum2 executes every time step because those
blocks run at the fast rate.

SS_STEP:

2 Mapping Simulink Semantics to Structured Text

2-16

matlab:plcdemo_multirate

 (* Gain: '<S1>/Gain' incorporates:
 * Inport: '<Root>/U1'
 * Sum: '<S1>/Sum'
 * UnitDelay: '<S1>/Unit Delay' *)
 rtb_Gain := (U1 - UnitDelay_DSTATE) * 0.5;

 (* Outport: '<Root>/Y1' *)
 Y1 := rtb_Gain;
 IF plc_ts_counter1 = 0 THEN

 (* UnitDelay: '<S1>/Unit Delay1' *)
 UnitDelay1 := UnitDelay1_DSTATE;

 (* Gain: '<S1>/Gain1' incorporates:
 * Inport: '<Root>/U2'
 * Sum: '<S1>/Sum1' *)
 rtb_Gain1 := (U2 - UnitDelay1) * 0.5;

 (* Outport: '<Root>/Y2' *)
 Y2 := rtb_Gain1;
 END_IF;

 (* Outport: '<Root>/Y3' incorporates:
 * Sum: '<S1>/Sum2'
 * UnitDelay: '<S1>/Unit Delay' *)
 Y3 := UnitDelay_DSTATE - UnitDelay1;

 (* Update for UnitDelay: '<S1>/Unit Delay' *)
 UnitDelay_DSTATE := rtb_Gain;

 IF plc_ts_counter1 = 0 THEN

 (* Update for UnitDelay: '<S1>/Unit Delay1' *)
 UnitDelay1_DSTATE := rtb_Gain1;

 END_IF;

In general, for a subsystem with n different sample times, the generated code has n-1
time step counter variables, corresponding to the n-1 slower rates. Code generated from
parts of the model running at the slower rates executes conditionally, based on the
corresponding time step counter values.

 Generated Code Structure for Multirate Models

2-17

Generated Code Structure for Subsystem Mask
Parameters

In the generated code for masked subsystems, the mask parameters map to function
block inputs. The values you specify in the subsystem mask are assigned to these function
block inputs in the generated code.

For example, the following subsystem, Subsystem, contains two instances, Filt1 and
Filt2, of the same masked subsystem.

2 Mapping Simulink Semantics to Structured Text

2-18

The two subsystems, Filt1, and Filt2, have different values assigned to their mask
parameters. In this example, Filt1_Order_Thau is a constant with a value of 5.

 Generated Code Structure for Subsystem Mask Parameters

2-19

2 Mapping Simulink Semantics to Structured Text

2-20

Therefore, for the Filt1 subsystem, the Filt1_Order_Thau parameter has a value of 8,
and for the Filt2 subsystem, the Filt1_Order_Thau parameter has a value of 5.

The following generated code shows the Filt1 function block inputs. The
rtp_Filt1_Order_Thau input was generated for the Filt1_Order_Thau mask
parameter.

FUNCTION_BLOCK Filt1
VAR_INPUT
 ssMethodType: SINT;
 InitV: LREAL;
 InitF: BOOL;
 Input: LREAL;
 rtp_Filt1_Order_Thau: LREAL;
 rtp_InitialValue: LREAL;
 rtp_Filt1_Order_Enable: BOOL;
END_VAR

The following generated code is from the FUNCTION_BLOCK Subsystem. The function
block assigns a value of 8 to the rtp_Filt1_Order_Thau input for the i0_Filt1

 Generated Code Structure for Subsystem Mask Parameters

2-21

instance, and assigns a value of 5 to the rtp_Filt1_Order_Thau input for the
i1_Filt1 instance.

SS_INITIALIZE:
 (* InitializeConditions for Atomic SubSystem: '<S1>/Filt1' *)

 i0_Filt1(ssMethodType := SS_INITIALIZE, InitV := In3,
 InitF := In2, Input := In1,
 rtp_Filt1_Order_Thau := 8.0,
 rtp_InitialValue := 0.0,
 rtp_Filt1_Order_Enable := TRUE);
 Out1 := i0_Filt1.Out;

 (* End of InitializeConditions for SubSystem: '<S1>/Filt1' *)

 (* InitializeConditions for Atomic SubSystem: '<S1>/Filt2' *)
 i1_Filt1(ssMethodType := SS_INITIALIZE, InitV := In6,
 InitF := In5, Input := In4,
 rtp_Filt1_Order_Thau := 5.0,
 rtp_InitialValue := 4.0,
 rtp_Filt1_Order_Enable := TRUE);
 Out2 := i1_Filt1.Out;

 (* End of InitializeConditions for SubSystem: '<S1>/Filt2' *)
SS_STEP:
 (* Outputs for Atomic SubSystem: '<S1>/Filt1' *)

 i0_Filt1(ssMethodType := SS_OUTPUT, InitV := In3, InitF := In2,
 Input := In1, rtp_Filt1_Order_Thau := 8.0,
 rtp_InitialValue := 0.0,
 rtp_Filt1_Order_Enable := TRUE);
 Out1 := i0_Filt1.Out;

 (* End of Outputs for SubSystem: '<S1>/Filt1' *)

 (* Outputs for Atomic SubSystem: '<S1>/Filt2' *)
 i1_Filt1(ssMethodType := SS_OUTPUT, InitV := In6, InitF := In5,
 Input := In4, rtp_Filt1_Order_Thau := 5.0,
 rtp_InitialValue := 4.0,
 rtp_Filt1_Order_Enable := TRUE);
 Out2 := i1_Filt1.Out;

 (* End of Outputs for SubSystem: '<S1>/Filt2' *)

2 Mapping Simulink Semantics to Structured Text

2-22

Global Tunable Parameter Initialization for PC WORX
For PC WORX, the coder generates an initialization function, PLC_INIT_PARAMETERS, to
initialize global tunable parameters that are arrays and structures. This initialization
function is called in the top-level initialization method.

For example, suppose that your model has a global array variable, ParArrayXLUT:

ParArrayXLUT=[0,2,6,10];

In the generated code, the PLC_INIT_PARAMETERS function contains the following code
to initialize ParArrayXLUT:

(* parameter initialization function starts *)

ParArrayXLUT[0] := LREAL#0.0;

ParArrayXLUT[1] := LREAL#2.0;

ParArrayXLUT[2] := LREAL#6.0;

ParArrayXLUT[3] := LREAL#10.0;

(* parameter initialization function ends *)
</div></html>

The PLC_INIT_PARAMETERS function is renamed i0_PLC_INIT_PARAMETERS, and
called in the top-level initialization method:

CASE SINT_TO_INT(ssMethodType) OF

 0:

 i0_PLC_INIT_PARAMETERS();

 Global Tunable Parameter Initialization for PC WORX

2-23

Considerations for Non-Intrinsic Math Functions
When Simulink PLC Coder encounters a math function that is not intrinsic, it generates
Structured Text by replacing the non-intrinsic function with an equivalent IEC-61131
compatible intrinsic function. For such cases, an input value that is larger than the
allowed input range, causes overflow and generates a NaN value.

For example, hyperbolic tan is not an intrinsic function. Simulink PLC Coder uses exp in
the generated code to represent tanh. More specifically, it uses (exp(2*x)-1)/(exp(2*x)+1).
For large values of x, this function overflows. The issue can be addressed by adding
validation code or using blocks before calling the tanh function to check that the range of
the input is within acceptable values. In MATLAB, tanh(x) for x>19 is 1.0000. So if x>19,
return a value of 1.0000.

See Also

2 Mapping Simulink Semantics to Structured Text

2-24

Generating Ladder Diagram

• “Ladder Diagram Generation for PLC Controllers” on page 3-2
• “Prepare Chart for Ladder Diagram Generation” on page 3-6
• “Generate Ladder Diagram Code from Stateflow Chart” on page 3-11
• “Import Ladder Diagram Code to CODESYS 3.5 IDE and Validate Diagram”

on page 3-16
• “Restrictions on Stateflow Chart for Ladder Diagram Generation” on page 3-20
• “Supported Features in Ladder Diagram” on page 3-23
• “Import L5X Ladder Files into Simulink” on page 3-25
• “Modelling and Simulation of Ladder Diagrams in Simulink” on page 3-31
• “Generating Ladder Diagram Code from Simulink” on page 3-40
• “Generating C Code from Simulink Ladder” on page 3-43
• “Verify Generated Ladder Diagram Code” on page 3-46

3

Ladder Diagram Generation for PLC Controllers

Note Ladder diagram generation from Stateflow charts will be removed in a future
release. To generate ladder diagrams, use Simulink models instead. To create Simulink
models compatible with ladder logic generation, do one of the following:

• Use the blocks from the PLC Ladder library to create a model that is compatible with
ladder diagram generation. To open the PLC Ladder library, type plcladderlib at
the MATLAB command prompt.

• Import ladder logic from a L5X file with the plcimportladder function.

To generate ladder logic from the Simulink models, use these functions:
plcgeneratecode and plcgeneraterunnertb

Ladder Diagram (LD) is a graphical programming language used to develop software for
programmable logic controllers (PLCs). It is one of the languages that the IEC 61131
Standard specifies for use with PLCs.

A program in Ladder Diagram notation is a circuit diagram that emulates circuits of relay
logic hardware. The underlying program uses Boolean expressions that translate readily
to switches and relays. When you program complex applications directly in Ladder
Diagram notation, it is challenging because you must write the programs with only
Boolean variables and expressions.

Using Simulink PLC Coder, you can generate Ladder Diagram code for your applications
from a Stateflow chart. The benefits are:

• You can design your application by using states and transitions in a Stateflow chart.
Once you complete the design, you can generate Ladder Diagram code in XML or
another format. You then import the generated code to an IDE such as CODESYS 3.5
or RSLogix AOI 5000 and view the Ladder Diagram.

• When you test your Stateflow chart by using a set of inputs, you can reuse these inputs
to create a test bench for the Ladder Diagram code. You import the test bench to your
PLC IDE and compare the results of simulation with the results of running the Ladder
Diagram. If the results agree, the original Stateflow chart is equivalent to the
generated Ladder Diagram code.

The figure shows a simple Stateflow chart with three states and two transitions. Based on
the transition conditions, the chart transitions from one state to another.

3 Generating Ladder Diagram

3-2

The state State1 is active as
long transitionCondition1 and transitionCondition2 are not true. This means,
State1 is active in one of these two cases:

• The chart has started execution through the default transition.
• The previous active state is also State1 and the

conditions transitionCondition1 and transitionCondition2 are false.

State3 is active in one of these two cases:

• The previous active state is State1, transitionCondition1 is false, and
transitionCondition2 is true.

• The previous active state is also State3. State3 is a terminating state.

You can import the generated Ladder Diagram code to CODESYS 3.5 and view the
diagram. A portion of the Ladder Diagram is shown.

 Ladder Diagram Generation for PLC Controllers

3-3

In the preceding Ladder Diagram, each rung of the ladder ends in a coil. The coil
corresponds to a state of the original chart. The contacts before the coil determine if the
coil receives power. You can compare the Ladder Diagram visually with the Stateflow
chart. For instance, the coil State1_new receives power in one of these two cases:

• The normally open contact State1 is closed and the normally closed contacts
transitionCondition1 and transitionCondition2 are open.

• The normally open contact stateflow_init is closed. This contact corresponds to
the default transition.

Once the coil State1_new receives power, the contact State1_new further down in the
ladder is then closed and the coil State1 receives power.

The Ladder Diagram executes from top to bottom and from left to right.

Ladder Diagram Generation Workflow
1 Before generating Ladder Diagram code from your Stateflow chart, confirm that your

chart is ready for code generation.

See “Prepare Chart for Ladder Diagram Generation” on page 3-6.

3 Generating Ladder Diagram

3-4

2 Generate Ladder Diagram code from the Stateflow chart. The code is in a format
suitable for import to an IDE.

Generate a test bench along with the code. The test bench is in the Structured Text
language. You can later import the code along with the test bench to your IDE. The
test bench invokes the Ladder Diagram code and compares the output against the
expected outputs from the original Stateflow chart.

See “Generate Ladder Diagram Code from Stateflow Chart” on page 3-11.
3 Import the generated Ladder Diagram code to your CODESYS 3.5 IDE. Validate the

diagram in the IDE by using the generated test bench.

See “Import Ladder Diagram Code to CODESYS 3.5 IDE and Validate Diagram” on
page 3-16.

 Ladder Diagram Generation for PLC Controllers

3-5

Prepare Chart for Ladder Diagram Generation

Note Ladder diagram generation from Stateflow charts will be removed in a future
release. To generate ladder diagrams, use Simulink models instead. To create Simulink
models compatible with ladder logic generation, do one of the following:

• Use the blocks from the PLC Ladder library to create a model that is compatible with
ladder diagram generation. To open the PLC Ladder library, type plcladderlib at
the MATLAB command prompt.

• Import ladder logic from a L5X file with the plcimportladder function.

To generate ladder logic from the Simulink models, use these functions:
plcgeneratecode and plcgeneraterunnertb

This example shows how to prepare your Stateflow chart for Ladder Diagram code
generation. Once your chart is ready, you can generate Ladder Diagram code from the
chart.

For the complete Ladder Diagram code generation workflow, see “Ladder Diagram
Generation Workflow” on page 3-4.

Design PLC Application with Stateflow
Use Stateflow to design state machines that model PLC controllers. Your Stateflow chart
must have these properties:

• The inputs and outputs to the chart must be Boolean. They correspond to the input
and output terminals of your PLC.

• Each state in the chart must correspond to an output. The output is true if the state is
active.

To ensure that each state in the chart is mapped to an output, in the Properties dialog
box of each state, select Create output for monitoring. Then, select Self
activity.

3 Generating Ladder Diagram

3-6

• The transition conditions must involve only Boolean operations such as ~, &, and |
between the inputs.

For instance, in the following chart, transitionCondition1, and
transitionCondition2 are Boolean inputs to the model. State1, State2, and
State3 correspond to Boolean outputs from the model.

 Prepare Chart for Ladder Diagram Generation

3-7

Some advanced Stateflow features on page 3-20 are not supported because of inherent
restrictions in Ladder Diagram semantics. You can use the function plccheckforladder
to check if the chart has the required properties. You can also use the function
plcprepareforladder to change certain chart properties so that the chart is ready for
Ladder Diagram code generation.

You can start generating Ladder Diagram code from the chart. See the example in
“Generate Ladder Diagram Code from Stateflow Chart” on page 3-11.

Create Test Harness for Chart
If you want to generate a test bench for validation of the Ladder Diagram code, create a
test harness for the Stateflow chart. The test harness can consist of multiple test cases.
Using the test harness, Simulink PLC Coder can generate test benches for validation of
the Ladder Diagram code.

3 Generating Ladder Diagram

3-8

You can manually create a test harness by using the Signal Builder block or autogenerate
a test harness by using Simulink Design Verifier™. To autogenerate the test harness:

1 Right-click the chart or a subsystem containing the chart. Select Design Verifier >
Generate Tests for Subsystem.

2 After test creation, select Create harness model.

The harness model is created. The model consists of the original subsystem coupled with
inputs from a Signal Builder block. The block consists of multiple test cases, so that the
states and transitions in your model are covered at least once.

You can also create tests by using other blocks from the Simulink library. However, you
must ensure that the inputs to the chart are Boolean.

 Prepare Chart for Ladder Diagram Generation

3-9

You can now generate Ladder Diagram code from the chart and validate the diagram.

• To generate Ladder Diagram code only, use the original Stateflow chart.
• To generate Ladder Diagram code with test bench, use the Stateflow chart coupled

with the Boolean inputs from the test cases. For instance, if you create a harness
model with Simulink Design Verifier, use the harness model for the Ladder Diagram
code and test bench generation instead of the original chart.

See “Generate Ladder Diagram Code from Stateflow Chart” on page 3-11.

3 Generating Ladder Diagram

3-10

Generate Ladder Diagram Code from Stateflow Chart

Note Ladder diagram generation from Stateflow charts will be removed in a future
release. To generate ladder diagrams, use Simulink models instead. To create Simulink
models compatible with ladder logic generation, do one of the following:

• Use the blocks from the PLC Ladder library to create a model that is compatible with
ladder diagram generation. To open the PLC Ladder library, type plcladderlib at
the MATLAB command prompt.

• Import ladder logic from a L5X file with the plcimportladder function.

To generate ladder logic from the Simulink models, use these functions:
plcgeneratecode and plcgeneraterunnertb

This example shows how to:

• Generate code from a Stateflow chart that you can view as Ladder Diagram in your
IDE.

• Generate test bench for validation of the Ladder Diagram code in your IDE.

For the complete Ladder Diagram code generation workflow, see “Ladder Diagram
Generation Workflow” on page 3-4.

Stateflow Chart and Ladder Logic Diagram
The figure shows a Stateflow chart that implements three-aspect logic, a decision logic for
many railway signaling applications.

 Generate Ladder Diagram Code from Stateflow Chart

3-11

The chart consists of five states: Init, Fault, Red, Yellow, and Green. Based on the
input to the chart, transitions to any of these states can take place. For instance, the state
Red becomes active in the following scenarios:

• Initialization and power up: The previous state is Init and the condition Power_Up
is true.

• Fault rectification: The previous state is Fault and the condition VLDHealthy &
FaultRectified is true.

• Transitions from other colors: The previous state is Green or Yellow, the
conditions that allow transition to Red are true, and the conditions that allow
transition to another color or to the Fault state are false.

• Staying red: The previous state is Red and the conditions that allow transition to
another state are false.

3 Generating Ladder Diagram

3-12

The figure shows a portion of the Ladder Diagram code generated from the chart when
viewed in the CODESYS 3.5 IDE. The Ladder Diagram consists of contacts (normally open
and normally closed) and coils (normal, set, and reset).

 Generate Ladder Diagram Code from Stateflow Chart

3-13

You can map elements of the original Stateflow chart to these coils and contacts. For
instance, the coil Red_new corresponds to the update of the state Red in the Stateflow
chart. For the coil to receive power, one of the following must be true:

• Initialization and power up: The normally open contacts Init and Power_Up must
be closed.

• Fault rectification: The normally open contacts Fault and T_1_1_trans must be
closed. The contact T_1_1_trans represents the transition condition VLDHealthy &
FaultRectified in the chart.

• Transitions from other colors: The normally open contact Green must be closed
and the following must be true:

• The normally open contact T_2_3_trans must be closed. This contact corresponds
to the chart condition that must be true for transition to the Red state.

• The normally closed contacts T_2_1_trans and T_2_2_trans must stay closed.
These contacts correspond to the chart condition that must be false for transition
to the Red state. If the conditions are true, the contacts open and the coil no longer
receives power.

• Staying red: The normally open contact Red must be closed, and the normally closed
contacts T_4_1_trans and T_4_2_trans must stay closed. These contacts
correspond to the chart conditions that must be false for the Red state to continue to
be active. If the conditions are true, the contacts open and the coil no longer receives
power.

3 Generating Ladder Diagram

3-14

Generate Ladder Diagram from Chart
To generate Ladder Diagram code from the model plcdemo_ladder_three_aspect:

1 Open the model.
2 Specify the target IDE for which to generate the Ladder Diagram code.

Right-click the chart and select PLC Code > Options. Specify a supported IDE for
the option “Target IDE” on page 12-4. See “IDEs Supported for Ladder Diagram
Code Generation”.

3 Right-click the chart and select PLC Code > Generate Ladder Logic for Chart.

If code generation is successful, in the subfolder plcsrc of the current working folder,
you see the file ModelName.xml. You import this file to your IDE and view the Ladder
Diagram. For the CODESYS 3.5 IDE, see “Import Ladder Diagram Code to CODESYS 3.5
IDE and Validate Diagram” on page 3-16.

You can also use the function plcgenerateladder to generate Ladder Diagram code
from a Stateflow chart.

Generate Ladder Diagram Along with Test Bench
You can generate a test bench to validate the generated Ladder Diagram code. You import
the code together with the test bench in your IDE and validate the Ladder Diagram
against the original Stateflow chart using the test bench. To generate test bench along
with the Ladder Diagram code:

1 Right-click the chart and select PLC Code > Options. Select the option “Generate
Testbench for Subsystem” on page 12-9.

2 Right-click the chart and select PLC Code > Generate Ladder Logic for Chart.

The test benches use the inputs to the original Stateflow chart. Therefore, you can create
test harnesses for the original chart and reuse them for validation of the Ladder Diagram
code.

You can also use the function plcgenerateladder to generate test benches.

After generating the Ladder Diagram code and the test benches, you can import them to
your IDE. For the CODESYS 3.5 IDE, see “Import Ladder Diagram Code to CODESYS 3.5
IDE and Validate Diagram” on page 3-16.

 Generate Ladder Diagram Code from Stateflow Chart

3-15

Import Ladder Diagram Code to CODESYS 3.5 IDE and
Validate Diagram

Note Ladder diagram generation from Stateflow charts will be removed in a future
release. To generate ladder diagrams, use Simulink models instead. To create Simulink
models compatible with ladder logic generation, do one of the following:

• Use the blocks from the PLC Ladder library to create a model that is compatible with
ladder diagram generation. To open the PLC Ladder library, type plcladderlib at
the MATLAB command prompt.

• Import ladder logic from a L5X file with the plcimportladder function.

To generate ladder logic from the Simulink models, use these functions:
plcgeneratecode and plcgeneraterunnertb.

This example shows how to import generated Ladder Diagram code to an IDE and
validate the generated code against the original Stateflow chart by using the generated
test bench.

For this example, the CODESYS 3.5 IDE is used. You can also use one of the other
supported IDE. See “IDEs Supported for Ladder Diagram Code Generation”.

For the complete Ladder Diagram code generation workflow, see “Ladder Diagram
Generation Workflow” on page 3-4.

Import Ladder Diagram XML
After code generation, you see the Ladder Diagram code XML file ModelName.xml in a
subfolder plcsrc of the current working folder. To import the generated XML and view
the Ladder Diagram in the CODESYS 3.5 IDE:

1 Create an empty project.
2 Import the Ladder Diagram code to the project.

Select Project > Import PLCOpenXML and navigate to the folder containing the
XML file.

3 Generating Ladder Diagram

3-16

A dialog box opens with a full list of the components imported from the XML. If you
generate a test bench for validation, you also see the testbench.

3 On the POUs pane, you see the project. View the Ladder Diagram in the project.

You can compare the Ladder Diagram with the original Stateflow chart.

 Import Ladder Diagram Code to CODESYS 3.5 IDE and Validate Diagram

3-17

For instance, if you generate Ladder Diagram code from the model
plcdemo_ladder_three_aspect, in the Ladder Diagram, you can identify the
transition from the Fault state to the Red state.

The transition appears in the Ladder Diagram in three steps:

a The normally open contacts VLDHealthy and FaultRectified are closed. Coil
T_1_1_trans receives power and is energized.

b The normally open contacts Fault and T_1_1_trans are closed. The coil
Red_new receives power and is energized. Other conditions not shown in figure
must also be satisfied.

c The normally open contact Red_new is closed. The coil Red receives power and
is energized.

Besides coils and normally open contacts , the Ladder Diagram also uses:

•
Normally closed contacts : They appear if the ~ operator is used in a
transition condition.

•
Set coils and reset coils : They are used in the Ladder Diagram for chart
initialization. Reset coils are also used if you enforce additional safeguards against

3 Generating Ladder Diagram

3-18

multiple states from being simultaneously active. See the argument
InsertGuardResets in plcgenerateladder.

For more information about these symbols, refer to the IEC 61131-3 specifications.
4 Select Online > Simulation. Click the (Build) button and verify that there are no

build errors.

If the option is not active, you might have to change the version number in your XML.
Search for the version number in the XML and depending on the patch that you have,
replace it with the following version number:

• CODESYS V3.5 SP6 Patch1: 3.5.4.30
• CODESYS V3.5 SP6 Patch3: 3.5.6.30
• CODESYS V3.5 SP8 Patch2: 3.5.8.20
• CODESYS V3.5 SP8 Patch4: 3.5.8.40

Verify Ladder Diagram with Test Bench
In your project, you see the generated test bench. To simulate using the test bench and
validate your generated code:

1
Click the (Login) button and log in to the emulator device.

2
Click the (Start) button and begin simulation.

3 Double-click a test bench in your project. You see the following variables updating to
reflect the results of validation.

• The variable testCycleNum increases from 0 to the number of cycles.
• The variable testVerify remains TRUE as long as the test bench verification

succeeds.

 Import Ladder Diagram Code to CODESYS 3.5 IDE and Validate Diagram

3-19

Restrictions on Stateflow Chart for Ladder Diagram
Generation

Note Ladder diagram generation from Stateflow charts will be removed in a future
release. To generate ladder diagrams, use Simulink models instead. To create Simulink
models compatible with ladder logic generation, do one of the following:

• Use the blocks from the PLC Ladder library to create a model that is compatible with
ladder diagram generation. To open the PLC Ladder library, type plcladderlib at
the MATLAB command prompt.

• Import ladder logic from a L5X file with the plcimportladder function.

To generate ladder logic from the Simulink models, use these functions:
plcgeneratecode and plcgeneraterunnertb

Ladder Diagram semantics must be represented with switches and relays. Therefore, if
you intend to generate a Ladder Diagram from a Stateflow chart, you cannot use some
advanced features in your chart. The Stateflow chart must have the following form:

• The inputs and outputs to the chart must be Boolean. These inputs and outputs
correspond to the input and output terminals of your PLC.

• Each state of the chart must correspond to a chart output.
• The expressions controlling the transition between states must involve only Boolean

operations between the inputs.

In addition, the chart must have the following properties. You can use the function
plccheckforladder to check if the chart has the required properties. You can also use
the function plcprepareforladder to change certain chart properties so that the chart
is ready for Ladder Diagram code generation.

• The chart Action Language must be C.
• Disable the following chart properties:

• Enable Super Step Semantics
• Execute (enter) Chart At Initialization
• Initialize Outputs Every Time Chart Wakes Up

3 Generating Ladder Diagram

3-20

• The chart must have at least one input and output. The input and output data must be
Boolean.

• Each output must correspond to a state in the chart. The output is true if the state is
active.

To ensure that each state in the chart is mapped to an output, in the Properties dialog
box of each state, select Create output for monitoring. Then, select Self
activity.

• The chart must not have data with scope other than input or output.
• The chart must not include:

• Atomic subcharts
• Multiple default transition
• Simulink functions
• Parallel states
• State hierarchy
• History junctions
• Dangling transitions
• Super transitions crossing subchart boundaries
• Conditional default paths
• Self transitions

 Restrictions on Stateflow Chart for Ladder Diagram Generation

3-21

See Also

Related Examples
• “Prepare Chart for Ladder Diagram Generation” on page 3-6
• “Generate Ladder Diagram Code from Stateflow Chart” on page 3-11
• “Import Ladder Diagram Code to CODESYS 3.5 IDE and Validate Diagram” on page

3-16

More About
• “Ladder Diagram Generation for PLC Controllers” on page 3-2

3 Generating Ladder Diagram

3-22

Supported Features in Ladder Diagram
The ladder import feature of Simulink PLC Coder allows you to import Ladder Diagram
created with Rockwell Automation IDEs such as RSLogix 5000 and Studio 5000 into the
Simulink environment as a model.

Supported Ladder Elements
Simulink PLC Coder supports the following ladder elements:

• Boolean variables
• Data access to array elements, bus elements, bit, and constant variables.
• Multiple rungs
• Simple Jump, Temporary End, and other supported execution control elements.
• Ladder diagram blocks. See plcladderlib.
• Ladder Diagram Instructions. See “Instructions Supported in Ladder Diagram” on

page 14-2
• L5X Datatypes:

L5X Data Types Simulink Types
BOOL Boolean datatype
SINT Int8 datatype
INT Int16 datatype
DINT Int32 datatype
REAL Single datatype
TIMER Timer bustype
COUNTER Counter bustype
CONTROL Control bustype
UDT UDT bustype
AOI AOI bustype

• Ladder diagram tags

• Controller Tags

 Supported Features in Ladder Diagram

3-23

• Program Tags
• AOI Tags such as Input, Output and InOut

See Also
plccleartypes | plcgeneratecode | plcgeneraterunnertb | plcimportladder |
plcladderlib | plcladderoption | plcloadtypes

More About
• “Import L5X Ladder Files into Simulink” on page 3-25
• “Modelling and Simulation of Ladder Diagrams in Simulink” on page 3-31
• “Generating Ladder Diagram Code from Simulink” on page 3-40
• “Generating C Code from Simulink Ladder” on page 3-43
• “Verify Generated Ladder Diagram Code” on page 3-46

3 Generating Ladder Diagram

3-24

Import L5X Ladder Files into Simulink
This example shows how to import a Ladder Diagram from an .L5X file created using
Rockwell Automation IDEs such as RSLogix9 5000 and Studio 5000 into the Simulink
environment. The import operation is performed using the plcimportladder function.

Description of the Ladder Diagram
The figure shows a Ladder Diagram with a simple timer. The Ladder Diagram consists of
four rungs with contacts (Switch_A, Light1, Motor_timer.DN), coils (Light1,
Light2, Motor), and TON timer function.

The simple_timer.L5X file was created using the RSLogix 5000 IDE. A snippet of
the .L5X file is shown.
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<RSLogix5000Content SchemaRevision="1.0" SoftwareRevision="30.00"
TargetName="simple_timer" TargetType="Controller"
ContainsContext="false" Owner="Arun Mathew Iype, MathWorks"
ExportDate="Mon Nov 12 16:35:28 2018" ExportOptions="NoRawData
L5KData DecoratedData ForceProtectedEncoding AllProjDocTrans">
<Controller Use="Target" Name="simple_timer"
ProcessorType="Emulate 5570" MajorRev="30"
MinorRev="11" TimeSlice="20" ShareUnusedTimeSlice="1"
ProjectCreationDate="Mon Nov 12 16:33:36 2018"
LastModifiedDate="Mon Nov 12 16:33:43 2018"
SFCExecutionControl="CurrentActive"
SFCRestartPosition="MostRecent" SFCLastScan="DontScan"
ProjectSN="16#0000_0000"
MatchProjectToController="false" CanUseRPIFromProducer="false"
InhibitAutomaticFirmwareUpdate="0" PassThroughConfiguration="EnabledWithAppend"
DownloadProjectDocumentationAndExtendedProperties="true"

 Import L5X Ladder Files into Simulink

3-25

DownloadProjectCustomProperties="true"
ReportMinorOverflow="false">
<RedundancyInfo Enabled="false" KeepTestEditsOnSwitchOver="false"
IOMemoryPadPercentage="90"
DataTablePadPercentage="50"/>
<Security Code="0" ChangesToDetect="16#ffff_ffff_ffff_ffff"/>
<SafetyInfo/>
<DataTypes/>
<Modules>
<Module Name="Local" CatalogNumber="Emulate 5570" Vendor="1" ProductType="14"
ProductCode="53" Major="30" Minor="11" ParentModule="Local" ParentModPortId="1"
Inhibited="false" MajorFault="true">
<EKey State="ExactMatch"/>
<Ports>
<Port Id="1" Address="0" Type="ICP" Upstream="false">
<Bus Size="10"/>
</Port>
</Ports>
</Module>
</Modules>
<AddOnInstructionDefinitions/>
<Tags/>
<Programs>
<Program Name="MainProgram" TestEdits="false" MainRoutineName="MainRoutine"
Disabled="false" UseAsFolder="false">
...
<Tags>

Import Ladder Diagram
Before importing the .L5X file into Simulink :

• Verify the Ladder Diagram file is a valid .L5X file. The file can be verified by compiling
it in Rockwell Automation IDE.

• If the file is valid, copy the .L5X file into a directory with read and write permissions.
You can also create a separate folder to store all the imported files along with the
original Ladder Diagram .L5X file.

Use the plcimportladder function to import the ladder into Simulink. For this example,
the program Name of the ladder is MainProgram and the MainRoutineName is
MainRoutine.

>> plcimportladder('simple_timer.L5X')

The Ladder Diagram is imported into the pwd\simple_timer.slx Simulink model. The
state information of the ladder elements is stored in the data store memory and updated
by the model during simulation. The plcout\simple_timer_value.m file gets called

3 Generating Ladder Diagram

3-26

during the pre-load stage of the Simulink model. This file sets the timer initial values in
Motor_timer data store memory.

The simple_timer.slx Simulink model consists of a Ladder Diagram Controller as the
top unit.

This controller has a Main Task and Controller Tags. The Main Task consists of a
Main Program.

 Import L5X Ladder Files into Simulink

3-27

The Main Program contains the Simulink implementation of the simple_timer.L5X
Ladder Diagram. The ladder rung executes from top to bottom and left to right.

3 Generating Ladder Diagram

3-28

You can use the Signal Builder block to create test inputs for Switch_A and verify the
operation of the imported ladder. You can also generate a PLC Ladder Diagram code or a
C code for the top-level subsystem. If you want to edit the imported ladder, the Simulink
blocks are in the template Ladder Diagram Library. To open the library, enter:

plcladderlib

Limitations
• When importing an .L5X file that contains a continuous task, the imported Simulink

model has a sample time of -1. For periodic tasks, the sample time is the value
specified in the .L5X file. Event tasks are not supported.

 Import L5X Ladder Files into Simulink

3-29

• Simulink PLC Coder may not follow the same initialization order specified in the
Prescan mode. You must not read data from variables that are initialized by the
Prescan mode as this will lead to different behavior in simulation of the model when
compared to execution in the IDE. The following instructions are affected by this
limitation; OTE, ONS, OSF, OSR, CTD, CTU, TON, TOF, RTO, JSR, AOI, and FBC

• If you Ladder Diagram implementation has multiple AOI or subroutine instances with
the same name, the software does not check if these instances refer to the same
implementation. It is recommended to use different names if these structures contain
different functionality.

See Also
plccleartypes | plcgeneratecode | plcgeneraterunnertb | plcimportladder |
plcladderlib | plcladderoption | plcloadtypes

More About
• “Supported Features in Ladder Diagram” on page 3-23
• “Modelling and Simulation of Ladder Diagrams in Simulink” on page 3-31
• “Generating Ladder Diagram Code from Simulink” on page 3-40
• “Generating C Code from Simulink Ladder” on page 3-43
• “Verify Generated Ladder Diagram Code” on page 3-46

3 Generating Ladder Diagram

3-30

Modelling and Simulation of Ladder Diagrams in
Simulink

The ladder modelling feature of Simulink PLC Coder allows you to create Ladder
Diagrams in the Simulink environment as a model. After creating the Ladder Diagram,
you can simulate and generate code for the Ladder Diagram models from within the
Simulink environment.

1 To create a Ladder Diagram, open the Simulink PLC Coder Ladder library. At the
MATLAB command window, enter:

plcladderlib

This opens the Ladder library containing all the blocks required for building the
Ladder Diagram in Simulink.

 Modelling and Simulation of Ladder Diagrams in Simulink

3-31

3 Generating Ladder Diagram

3-32

2 Create a new blank Simulink model. You can drag and drop appropriate blocks from
the library to build your ladder logic model in Simulink. For each block, you can
double click to see the block parameters and use the help menu to view its
description. For more detailed information about the Ladder instructions that are
implemented by these blocks, refer to the LOGIX 5000 Controllers General
Instructions Reference PDF Manual.

3 The Simulink PLC Coder Ladder library contains top level ladder logic block such as
PLCControllerSuite, PLC Controller, Task, Ladder Diagram Program, Ladder diagram
Subroutine, Ladder Diagram Function Block (AOI), and AOI Runner. All these blocks
are organization blocks (Ladder Diagram containers) that cannot be on Ladder
Diagram rungs. Apart from these organizational blocks, other blocks from the library
cannot be top level ladder logic block for simulation.

• PLCControllerSuite can hold controller tags that are visible for all ladder logic
blocks in this controller, and also can contain Task block.

• PLCController allows you to build ladder logic directly. All the tags in the
controller level ladder diagram are controller tags (global variables or I/O
symbols)

• Task is used to contain Ladder Diagram programs that are using the same sample
time and priority.

Note Code generation for empty Task blocks is not supported. If a Task block is
empty, the software does not issues warnings or errors during code generation,
but the generated code produces errors in Rockwell IDEs.

• Ladder Diagram Program allows you to build ladder logic directly. Program level
Ladder Diagram can have program scope variables and also can access controller
tags if defined.

• Ladder Diagram Subroutine allows you to create and define a named ladder
routine. You can edit the logic implemented by the subroutine by clicking on the
Routine Logic button found under the block parameters menu of this block.

 Modelling and Simulation of Ladder Diagrams in Simulink

3-33

• Ladder Diagram Function Block (AOI) allows you to create Ladder Diagram
function block. You can edit the parameters and specifications of this block by
using the various options available under the block parameters menu of this block.

• AOI Runner is special program block that only can contain one Ladder Diagram
Function Block (AOI: add-on instruction) designed for AOI testing (test bench
generation and verification).

4 Drag and drop a PLCControllerSuite block into the blank model you created in the
previous step. You can double click on each organizational unit to traverse to the
lower level ladder logic semantics and build you Ladder Diagram. The empty ladder
logic semantics is shown.

5 Use the XIC and Motor blocks from the library to construct a simple ladder diagram
as shown. Use Add Rungs or Add 1 Rung buttons in the ladder logic semantic to
add a new rung. All added blocks should be on the rung. Use the Junction block to
merge rung branches.

3 Generating Ladder Diagram

3-34

6 Double click each new block added to the rung, and specify the tags. In Ladder
Diagrams, tags (variables) are used for representing all inputs, outputs, and internal
memory. The tag can be a variable name or an expression like:

• Variable Name: Start, Stop, Switch
• Bit Access: MyInt.0, MyInt.31
• Array Element: A[1], B[2,3], C[idx], D[i, j]. Use of braces for indexing is not

allowed in a tag expression. For example, A(2) is illegal.
• Structure: A.B, C.D, E.F.G
• Mixture: A[1].B[i,j].C[3].D
• Expressions: A[3].B > C.D; A[3]+B[4].C

7 The tags can have attributes such as Data Type, Initial Value, and size. To
change the attributes of the tag, open the Program Variables table within the
Ladder Diagram Program block. You can delete the unused variables in the variable
table by checking the Delete option. You must select Apply for the changes to take
effect. Go to controller level block, and double click the Controller Tags table to
specify the global variable and I/O symbol attributes.

 Modelling and Simulation of Ladder Diagrams in Simulink

3-35

8 Update the ladder logic model to reflect changes. You have now completed creating a
simple ladder model in Simulink.

Moideling AOI Prescan Routine
To model an AOI Prescan routine, follow the steps described:

1 For disabled Allow Prescan Routine AOI block , double-click the AOI block.
2 Click Prescan Routine button.
3 Build Prescan Routine Ladder Diagram.
4 Go to the parent program unit and double-click the AOI block. Enable Allow Prescan

Routine option to enable Prescan routine
5 For enabled Allow Prescan Routine AOI block , double-click the AOI block.
6 Click Prescan Routine button.
7 Build Prescan Routine Ladder Diagram.
8 Go to the parent program unit and double-click the AOI block. Disable and enable

Allow Prescan Routine option to enable Prescan routine

Ladder Model Simulation
To perform Ladder Diagram simulation in Simulink, you must connect appropriate input
and output blocks to the ladder model.

1 Use the plcladderoption function to enable Animation. At the MATLAB
command window, enter:

plcladderoption('simpleController','Animation','on')
2 For this demonstration, we will connect input and output ports to the

PLCControllerSuite block to provide inputs for simulation and read the outputs. This
requires the attributes of the switch and motor tags to be modified. To change the
attributes of the tag, open the Program Variables table within the Ladder Diagram
Program block and set them to the values shown.

3 Generating Ladder Diagram

3-36

3 Then, go to controller level block, and double click the Controller Tags table to
specify the global variable and I/O symbol attributes.

4 The software now adds input and output ports to the PLCControllerSuite block. You
can use Simulink blocks to add inputs to the ladder model. For example, you can use
the Constant block to add boolean inputs to mimic switch behavior.

5 Traverse to the Ladder Diagram Program block of the ladder model and Step
Forward through the simulation. The software uses the inputs provided, runs a
behavioral simulation, and animates the ladder rungs and blocks based on the
execution state.

 Modelling and Simulation of Ladder Diagrams in Simulink

3-37

6 You can continue stepping forward or run a continuous simulation to the end.

Limitations
• Unsigned integer types are not supported for ladder model. Use signed integer

instead.
• Double type is not supported for ladder model. Instead, use single type.
• The Rockwell Automation IDEs have limitations on the character length used for

names. Currently the length should not be more than 40 characters. Consult with the
Rockwell documentation for supported name lengths.

• When modeling Ladder Diagrams in Simulink, ensure that the Port numbers in the
Controller Tags are labelled uniquely and sequentially.

3 Generating Ladder Diagram

3-38

See Also
plccleartypes | plcgeneratecode | plcgeneraterunnertb | plcimportladder |
plcladderlib | plcladderoption | plcloadtypes

More About
• “Supported Features in Ladder Diagram” on page 3-23
• “Import L5X Ladder Files into Simulink” on page 3-25
• “Generating Ladder Diagram Code from Simulink” on page 3-40
• “Generating C Code from Simulink Ladder” on page 3-43
• “Verify Generated Ladder Diagram Code” on page 3-46

 See Also

3-39

Generating Ladder Diagram Code from Simulink
The following example demonstrates how to import a simple Ladder Diagram from
an .L5X file (simpleController.L5X) into the Simulink environment and then
generate Ladder Diagram (L5X) from the imported model. The Ladder Diagram .L5X file
was created using RSLogix 5000 IDE and contains contacts and coils representing
switches and motor. The following is a snapshot of the ladder structure.

1 Use the plcladderimport function to import the ladder into Simulink.
[mdlName,mdlLib,busScript] = plcimportladder('simpleController.L5X','OpenModel','On')

2 The imported model contains a PLC Controller block named simpleController,
followed by a Task block named MainTask and finally a Ladder Diagram Program
block named MainProgram. The model imported into Simulink has blocks that
implement the functionality of the contacts and coils.

3 Generating Ladder Diagram

3-40

3 Generate code for the subsystem, simpleController/simpleController.

generatedFiles = plcgeneratecode('simpleController/simpleController');

PLC code generation successful for 'simpleController/simpleController'.

Generated ladder files:
plcsrc\simpleController_gen.L5X

Note You cannot generate Structured Text code from the Ladder Diagram blocks.
The Ladder feature supports only ladder code generation.

Limitations
• Code generation requires a controller, task, program model, AOI runner, or AOI model

hierarchy
• AOI input argument should be either non-array or 1-D array type. 2-D or 3-D array

type is not supported for test bench generation. This limitation includes nested 2-D, 3-
D array types in structure fields.

 Generating Ladder Diagram Code from Simulink

3-41

• The Rockwell Automation IDEs have limitations on the character length used for
names. Currently the length should not be more than 40 characters. Consult with the
Rockwell documentation for supported name lengths.

See Also
plccleartypes | plcgeneratecode | plcgeneraterunnertb | plcimportladder |
plcladderlib | plcladderoption | plcloadtypes

More About
• “Supported Features in Ladder Diagram” on page 3-23
• “Import L5X Ladder Files into Simulink” on page 3-25
• “Modelling and Simulation of Ladder Diagrams in Simulink” on page 3-31
• “Generating C Code from Simulink Ladder” on page 3-43
• “Verify Generated Ladder Diagram Code” on page 3-46

3 Generating Ladder Diagram

3-42

Generating C Code from Simulink Ladder
The following example demonstrates how to import a simple ladder diagram from
an .L5X file (simpleController.L5X) into the Simulink environment and then
generate C code from the imported model. You must have a valid Simulink Coder license
and necessary compilers to generate C code from the model. For more information, see
“Getting Started with Simulink Coder” (Simulink Coder).

The .L5X file was created using RSLogix 5000 IDE and contains contacts and coils
representing switches and motor. The following is a snapshot of the ladder structure.

Use the plcladderimport function to import the ladder into Simulink.
[mdlName,mdlLib,busScript] = plcimportladder('simpleController.L5X','OpenModel','On')

The imported model contains a PLC Controller block named simpleController,
followed by a Task block named MainTask and finally a Ladder Diagram Program block
named MainProgram. The model imported into Simulink has blocks that implement the
functionality of the contacts and coils.

 Generating C Code from Simulink Ladder

3-43

To generate C code for the subsystem, simpleController/simpleController you
must first enable 'FastSim' option for the Simulink Ladder Diagram model.
currentState = plcladderoption('simpleController/simpleController','FastSim','on');

Open the Configuration Parameters dialog box from the model editor by clicking
Simulation > Configuration Parameters.

Alternately, type the following commands at the MATLAB command prompt.

cs = getActiveConfigSet(model);
openDialog(cs);

Ensure that a valid Toolchain is selected.

In the model window, initiate code generation and the build process for the model by
using any of the following options:

• Click the Build Model button.

3 Generating Ladder Diagram

3-44

• Press Ctrl+B.
• Select Code > C/C++ Code > Build Model.
• Invoke the rtwbuild command from the MATLAB command line.

See Also
plccleartypes | plcgeneratecode | plcgeneraterunnertb | plcimportladder |
plcladderlib | plcladderoption | plcloadtypes

More About
• “Supported Features in Ladder Diagram” on page 3-23
• “Import L5X Ladder Files into Simulink” on page 3-25
• “Modelling and Simulation of Ladder Diagrams in Simulink” on page 3-31
• “Generating Ladder Diagram Code from Simulink” on page 3-40
• “Verify Generated Ladder Diagram Code” on page 3-46

 See Also

3-45

Verify Generated Ladder Diagram Code
The following example demonstrates how to import a simple Ladder Diagram from
an .L5X file (simpleXIC.L5X) into the Simulink environment and generate test bench
code for it. The Ladder Diagram .L5X file was created using RSLogix 5000 IDE and
contains an AOI named simpleXIC with contact and coil representing a switch and a
light. The following is a snapshot of the ladder structure.

1 Use the plcladderimport function to import the ladder into Simulink.

[mdlName,mdlLib,busScript] = plcimportladder('simpleXIC.L5X',...
'OpenModel','On','TopAOI','simpleXIC')

2 The imported model contains an AOI Runner block named simpleXIC_runner,
followed by a Ladder Diagram Function (AOI) block named simpleXIC.

3 Generating Ladder Diagram

3-46

3 Add Signal Builder input block, Scope and output ports as shown.

4 Modify the Signal Builder input to mimic a switch operation as shown.

 Verify Generated Ladder Diagram Code

3-47

5 Generate test-bench for the Ladder Diagram model.

Tbcode = plcgeneraterunnertb('simpleXIC_runner/simpleXIC_runner')

Tbcode =

3 Generating Ladder Diagram

3-48

 1×1 cell array

 {'C:\runnerTB\simpleXIC_runner.L5X'}

If the test-bench code generation is successful, a test-bench file
simpleXIC_runner.L5X is created. The generated AOI test bench file can be
verified on Rockwell Automation IDE.

If you have created the Ladder Diagram model in Simulink and are generating Ladder
Diagram (L5X) code, you can also use the Generate testbench for subsystem option
available on the PLC Code Generation pane in the Configuration Parameters dialog box
to generate test bench code along with ladder code. When the selected subsystem is
ladder AOI Runner block and test bench option is on, the generated code will include test
bench, selected AOI, as well as dependent AOI and UDT types.

Limitations
• Ladder test bench generation is supported for only AOI Runner block.

 Verify Generated Ladder Diagram Code

3-49

• AOI input argument should be either non-array or 1-D array type. 2-D or 3-D array
type is not supported for test bench generation. This limitation includes nested 2-D, 3-
D array types in structure fields.

• AOI input argument in the L5X file should not be single-element array type for runner
test bench generation.

• Test bench generation for Ladder Diagram models containing timer blocks such as
TON, TOF and RTO fails. To generate test-bench code for these models, modify the
Ladder Diagram structure while maintaining the logic.

• If the Simulink model is set as read-only, the model can become corrupted during the
test bench generation process. However, all code generation changes performed on
the model will be reverted once the code generation process is completed. You can
ignore or close the model during this process.

See Also
plccleartypes | plcgeneratecode | plcgeneraterunnertb | plcimportladder |
plcladderlib | plcladderoption | plcloadtypes

More About
• “Supported Features in Ladder Diagram” on page 3-23
• “Import L5X Ladder Files into Simulink” on page 3-25
• “Modelling and Simulation of Ladder Diagrams in Simulink” on page 3-31
• “Generating Ladder Diagram Code from Simulink” on page 3-40
• “Generating C Code from Simulink Ladder” on page 3-43

3 Generating Ladder Diagram

3-50

Generating Test Bench Code

• “How Test Bench Verification Works” on page 4-2
• “Integrate Generated Code with Custom Code” on page 4-3
• “Import and Verify Structured Text Code” on page 4-5
• “Verify Generated Code with Multiple Test Benches” on page 4-9

4

How Test Bench Verification Works
The Simulink PLC Coder software simulates your model and automatically captures the
input and output signals for the subsystem that contains your algorithm. This set of input
and output signal data is the test bench data. The coder also automatically generates a
test bench, or test harness, using the test bench data.

The test bench runs the generated code to verify that the output is functionally and
numerically equivalent to the output from the execution of a Simulink model. The
following table shows how the test bench compares the expected and actual data values.

Data Type Comparison Error Tolerance
integer absolute 0
boolean absolute 0
single relative 0.0001
double relative 0.00001

The relative tolerance comparison for single or double data types uses the following logic:
IF ABS(actual_value - expected_value) > (ERROR_TOLERANCE * expected_value) THEN
 testVerify := FALSE;
END_IF;

To verify the generated code using the test bench, import the generated Structured Text
and the test bench data into your target IDE. You can import test bench code:

• Manually.
• Automatically, including running the test bench.

For more information, see “Import and Verify Structured Text Code” on page 4-5.

Depending on the target IDE platform, the Simulink PLC Coder software generates code
into one or more files. See “Files Generated with Simulink PLC Coder” on page 1-17 for
list of the target IDE platforms and the possible generated files.

4 Generating Test Bench Code

4-2

Integrate Generated Code with Custom Code
For the top-level subsystem that has internal state, the generated FUNCTION_BLOCK code
has ssMethodType. ssMethodType is a special input argument that the coder adds to
the input variables section of the FUNCTION_BLOCK section during code generation.
ssMethodType enables you to execute code for Simulink Subsystem block methods such
as initialization and computation steps. The generated code executes the associated CASE
statement based on the value passed in for this argument.

To use ssMethodType with a FUNCTION_BLOCK for your model, in the generated code,
the top-level subsystem function block prototype has one of the following formats:

Has Internal
State

ssMethodType Contains...

Yes The generated function block for the block has an extra first
parameter ssMethodType of integer type. This extra parameter is in
addition to the function block I/O parameters mapped from Simulink
block I/O ports. To use the function block, first initialize the block by
calling the function block with ssMethodType set to integer constant
SS_INITIALIZE. If the IDE does not support symbolic constants, set
ssMethodType to integer value 0. For each follow-up invocation, call
the function block with ssMethodType set to constant SS_STEP. If
the IDE does not support symbolic constants, set ssMethodType to
integer value 1. These settings cause the function block to initialize or
compute and return output for each time step.

No The function block interface only has parameters mapped from
Simulink block I/O ports. There is no ssMethodType parameter. To
use the function block in this case, call the function block with I/O
arguments.

For non top-level subsystems, in the generated code, the subsystem function block
prototype has one of the following formats:

Has Internal
State

ssMethodType Contains...

Yes The function block interface has the ssMethodType parameter. The
generated code might have SS_INITIALIZE, SS_OUTPUT, or other
ssMethodType constants to implement Simulink semantics.

 Integrate Generated Code with Custom Code

4-3

Has Internal
State

ssMethodType Contains...

No The function block interface only has parameters mapped from
Simulink block I/O ports. There is no ssMethodType parameter.

4 Generating Test Bench Code

4-4

Import and Verify Structured Text Code
After you generate code and test benches for your subsystem, you can import them to
your target IDE. Using the test bench data, you can verify that the results from your
generated code match your simulation results.

If you want to import the generated code, see “Generate and Automatically Import
Structured Text Code” on page 1-21.

Generate, Import, and Verify Structured Text
If you are working with the PHOENIX CONTACT (previously KW) Software MULTIPROG
5.0/5.50 or Phoenix Contact PC WORX 6.0 IDE, see “Import and Verify Structured Text to
PHOENIX CONTACT (previously KW) Software MULTIPROG 5.0 and Phoenix Contact PC
WORX 6.0 IDEs” on page 4-6.

Otherwise, to generate, import, and verify Structured Text code:

1 Specify that test bench code must be generated for the subsystem.

a Right-click your subsystem and select PLC Code > Options.
b Select “Generate Testbench for Subsystem” on page 12-9.

If you do not specify that test bench code must be generated, when you automatically
verify the generated code, you see the error Testbench not selected.

2 You can generate the code and testbench, and manually import them to your target
IDE. For information on how to import generated code, see the user manual for your
target IDE.

Alternatively, after code generation, import and verify the generated code
automatically. Right-click the subsystem and select PLC Code > Generate, Import,
and Verify Code for Subsystem. The software:

a Generates the code and test bench.
b Starts the target IDE.
c Creates a project.
d Imports the generated code and test bench to the new project in the target IDE.
e Runs the generated code on the target IDE to verify it.

 Import and Verify Structured Text Code

4-5

For information on:

• IDEs not supported for automatic import and verification, see “Troubleshoot
Automatic Import Issues” on page 1-22.

• Possible reasons for long testbench code generation time, see “Troubleshooting: Long
Test Bench Code Generation Time” on page 4-7.

Import and Verify Structured Text to PHOENIX CONTACT
(previously KW) Software MULTIPROG 5.0 and Phoenix
Contact PC WORX 6.0 IDEs
Before you can automatically import generated code to this IDE, create an Empty
template. You must have already set your target IDE to KW-Software MULTIPROG 5.0 or
Phoenix Contact PC WORX 6.0.

1 Start the PHOENIX CONTACT (previously KW) Software MULTIPROG 5.0/5.50 or
Phoenix Contact PC WORX 6.0 IDE.

2 Select File > Delete Template. Delete any template named Empty, and click OK
when done.

3 Select File > New Project, select Project Wizard, then click OK.

a In the Project Name field, type Empty,
b In the Project Path field, type or select a path to which you have write

privileges.
c Click Next.
d In the remaining wizard pages, click Next to leave the default selections. At the

end of the wizard, click Finish.

The IDE is updated with the new Empty project tree.
4 In the project, delete everything under the following nodes:

• Logical POUs
• Physical Hardware

5 Verify that the project tree has only top-level nodes for Libraries, Data Types,
Logical POUs, and Physical Hardware. There must not be any subtree nodes.

6 In the IDE, select File > Save As Template.

4 Generating Test Bench Code

4-6

7 In Template Name, type Empty.
8 Click OK.
9 Close the IDE interface.

Open your model, right-click the Subsystem block, and select one of the following:

• PLC Code > Generate and Import Code for Subsystem
• PLC Code > Generate, Import, and Verify Code for Subsystem

If you automatically generate, import, and verify code, the software:

1 Generates the code and test bench.
2 Starts the target IDE.
3 Creates a project.
4 Imports the generated code and test bench to the new project in the target IDE.
5 Runs the generated code on the target IDE to verify it.

Troubleshooting: Long Test Bench Code Generation Time
If code generation with test bench takes too long, one possible reason is that the test
bench data size exceeds the limit that Simulink PLC Coder can handle. The test bench
data size is directly related to the number of times the input signal is sampled during
simulation. For large simulation time or more frequent sampling, the test bench data can
be large.

To reduce test bench generation time, do one of the following:

• Reduce the duration of the simulation.
• Increase the simulation step size.
• If you want to retain the simulation duration and the step size, divide the simulation

into multiple parts. For a simulation input signal with duration [0, t], divide the input
into multiple parts with durations [0, t1], [t1, t2], [t2, t3], etc., where t1 < t2 < t3
< .. < t. Generate test bench code for each part separately and manually import
them together to your IDE.

 Import and Verify Structured Text Code

4-7

See Also

Related Examples
• “Verify Generated Code with Multiple Test Benches” on page 4-9

4 Generating Test Bench Code

4-8

Verify Generated Code with Multiple Test Benches
You can generate code with multiple test benches from your subsystem. For the
generated code to have multiple test benches, the input to your subsystem must consist of
multiple signal groups.

To generate multiple test benches for your subsystem:

1 Provide multiple signal groups as inputs by using a Signal Builder block with multiple
signal groups (Simulink).

Instead of manually entering a Signal Builder block and creating multiple signal
groups, you can use Simulink Design Verifier to create a test harness model from the
subsystem. In the test harness model, a Signal Builder block with one or more signal
groups provides input to the subsystem. You can use this Signal Builder block to
provide inputs to your subsystem. However, if your model is complex, Simulink
Design Verifier can create large number of signal groups. See “Troubleshooting: Test
Data Exceeds Target Data Size” on page 4-11.

To create your Signal Builder block with Simulink Design Verifier:

a Right-click the subsystem and select Design Verifier > Generate Tests for
Subsystem.

b In the Simulink Design Verifier Results Summary window, select Create harness
model.

 Verify Generated Code with Multiple Test Benches

4-9

c Open the Inputs block in the test harness model. The Inputs block is a Signal
Builder block that can have one or more signal groups.

In the Signal Builder window, make sure that more than one signal group is
available in the Active Group drop-down list.

d Copy the Signal Builder block from the test harness model and use this block to
provide inputs to your original subsystem.

2 Specify that test benches must be generated for the subsystem.

a Right-click your subsystem and select PLC Code > Options.

4 Generating Test Bench Code

4-10

b Select “Generate Testbench for Subsystem” on page 12-9.
3 Right-click the subsystem and select PLC Code > Generate, Import and Verify

Code for Subsystem.

In your target IDE, you can see multiple test benches. Each test bench corresponds
to a signal group.

Troubleshooting: Test Data Exceeds Target Data Size
If the test data from the multiple signal groups exceeds the maximum data size on your
target, you can encounter compilation errors. If you encounter compilation errors when
generating multiple test benches, try one of the following:

• Reduce the number of signal groups in the Signal Builder block and regenerate the
test benches.

• Increase the simulation step size for the subsystem.

See Also

Related Examples
• “Import and Verify Structured Text Code” on page 4-5

 See Also

4-11

Code Generation Reports

• “Information in Code Generation Reports” on page 5-2
• “Create and Use Code Generation Reports” on page 5-4
• “View Requirements Links from Generated Code” on page 5-16
• “Working with the Static Code Metrics Report” on page 5-17

5

Information in Code Generation Reports
The coder creates and displays a Traceability Report file when you select one or more of
these options:

GUI Option Command-Line Property Description
Generate
traceability
report

PLC_GenerateReport Specify whether to create code
generation report.

Generate
model web
view

PLC_GenerateWebview Include the model web view in the
code generation report to navigate
between the code and model within
the same window. You can share
your model and generated code
outside of the MATLAB
environment.

In the Configuration Parameters dialog box, in the Report panel, you see these options.

Note You must have a Simulink Report Generator™ license to generate traceability
reports.

The coder provides the traceability report to help you navigate more easily between the
generated code and your source model. When you enable code generation report, the
coder creates and displays an HTML code generation report. You can generate reports
from the Configuration Parameters dialog box or the command line. Traceability report
generation is disabled when generating Ladder Diagrams from Stateflow chart. See
“Traceability Report Limitations” on page 11-4. A typical traceability report looks
something like this figure:

5 Code Generation Reports

5-2

 Information in Code Generation Reports

5-3

Create and Use Code Generation Reports
In this section...
“Generate a Traceability Report from Configuration Parameters” on page 5-4
“Keep the Report Current” on page 5-6
“Trace from Code to Model” on page 5-7
“Trace from Model to Code” on page 5-8
“Model Web View in Code Generation Report” on page 5-9
“Generate a Static Code Metrics Report” on page 5-13
“Generate a Traceability Report from the Command Line” on page 5-14

Generate a Traceability Report from Configuration Parameters
To generate a Simulink PLC Coder code generation report from the Configuration
Parameters dialog box:

1 Verify that the model is open.
2 Open the Configuration Parameters dialog box and navigate to the PLC Code

Generation pane.
3 To enable report generation, select Report > Generate traceability report.
4 Click Apply.

5 Code Generation Reports

5-4

5 Click PLC Code Generation > Generate code to initiate code and report
generation. The coder generates HTML report files as part of the code generation
process.

The HTML report appears:

 Create and Use Code Generation Reports

5-5

For more information, see:

• “Trace from Code to Model” on page 5-7
• “Trace from Model to Code” on page 5-8

Keep the Report Current
If you generate a code generation report for a model, and then change the model, the
report becomes invalid. To keep your code generation report current, after modifying the
source model, regenerate code and the report. If you close and then reopen a model,
regenerate the report.

5 Code Generation Reports

5-6

Trace from Code to Model
You must have already generated code with a traceability report. If not, see “Generate a
Traceability Report from Configuration Parameters” on page 5-4 or “Generate a
Traceability Report from the Command Line” on page 5-14.

To trace generated code to your model:

1 In the generated code HTML report display, look for <S1>/Gain. Code Generation
Report has syntax highlighting for easy readability. PLC-specific keywords are
highlighted in blue, comments in green, and the rest of the code in black.

2 In the HTML report window, click a link to highlight the corresponding source block.
For example, in the HTML report shown in the previous figure, you click the
hyperlink for the Gain block (highlighted) to view that block in the model. Clicking
the hyperlink locates and displays the corresponding block in the model editor
window. You can use the same method to trace other block from the HTML report.

 Create and Use Code Generation Reports

5-7

Trace from Model to Code
You can select a component at any level of the model with model-to-code traceability. You
can also view the code references to that component in the HTML code generation report.
You can select the following objects for tracing:

• Subsystem
• Simulink block
• MATLAB Function block
• Truth Table block
• State Transition Table block
• Stateflow chart, or the following elements of a Stateflow chart:

• State
• Transition
• Graphical function
• MATLAB function
• Truth table function

You must have already generated code with a traceability report to trace a model
component to the generated code. If not, see “Generate a Traceability Report from
Configuration Parameters” on page 5-4 or “Generate a Traceability Report from the
Command Line” on page 5-14.

To trace a model component to the generated code:

1 In the model window, right-click the component and select PLC Code > Navigate to
Code.

5 Code Generation Reports

5-8

2 Selecting Navigate to Code activates the HTML code generation report. The
following figure shows the result of tracing the Gain block within the subsystem.

In the report, the highlighted tag S1/Gain indicates the beginning of the generated
code for the block. You can use the same method to trace from other Simulink,
Stateflow, and MATLAB objects to the generated traceability report.

For a programmatic way to trace a block in the model to generated code, see rtwtrace.

Model Web View in Code Generation Report
Model Web Views

To review and analyze the generated code, it is helpful to navigate between the code and
model. You can include a web view of the model within the HTML code generation report.
You can then share your model and generated code outside of the MATLAB environment.
You need a Simulink Report Generator license to include a Web view (Simulink Report
Generator) of the model in the code generation report.

Browser Requirements for Web Views

Web views require a web browser that supports Scalable Vector Graphics (SVG). Web
views use SVG to render and navigate models.

 Create and Use Code Generation Reports

5-9

You can use the following web browsers:

• Mozilla® Firefox® Version 1.5 or later, which has native support for SVG. To download
the Firefox browser, go to www.mozilla.com/.

• Apple Safari Web browser
• The Microsoft® Internet Explorer® web browser with the Adobe® SVG Viewer plugin.

To download the Adobe SVG Viewer plugin, go to www.adobe.com/svg/.

Note Web views do not currently support Microsoft Internet Explorer 9.

Generate HTML Code Generation Report with Model Web View

This example shows how to create an HTML code generation report which includes a web
view of the model diagram.

1 Open the plcdemo_simple_subsystem model.
2 Open the Configuration Parameters dialog box and navigate to the Code Generation

pane.
3 To enable report generation, select Report > Generate traceability report.
4 To enable model web view, select Report > Generate model web view.
5 Click Apply.

The dialog box looks something like this figure:

5 Code Generation Reports

5-10

https://www.mozilla.com/
https://www.adobe.com/svg/

6 Click PLC Code Generation > Generate code to initiate code and report
generation. The code generation report for the top model opens in a MATLAB web
browser.

 Create and Use Code Generation Reports

5-11

7 In the left navigation pane, select a source code file. The corresponding traceable
source code is displayed in the right pane and includes hyperlinks.

8 Click a link in the code. The model web view displays and highlights the
corresponding block in the model.

9 To go back to the code generation report for the top model, at the top of the left
navigation pane, click the Back button until the report for the top model is displayed.

For more information about navigating between the generated code and the model
diagram, see:

5 Code Generation Reports

5-12

• “Trace from Code to Model” on page 5-7
• “Trace from Model to Code” on page 5-8

Model Web View Limitations

When you are using the model web view, the HTML code generation report includes the
following limitations:

• Code is not generated for virtual blocks. In the model web view, if you click a virtual
block, the code generation report clears highlighting in the source code files.

• Stateflow truth tables, events, and links to library charts are not supported in the
model web view.

• Searching in the code generation report does not find or highlight text in the model
web view.

• In a subsystem build, the traceability hyperlinks of the root-level inports and outports
blocks are disabled.

• If you navigate from the actual model diagram (not the model web view in the report),
to the source code in the HTML code generation report, the model web view is
disabled and not visible. To enable the model web view, open the report again, see
“Open Code Generation Report” (Simulink Coder).

Generate a Static Code Metrics Report
The PLC Coder Static Code Metrics report provides statistics of the generated code. The
report is generated when you select Generate Traceability Report in the Configuration
Parameters dialog box. You can use the Static Code Metrics Report to evaluate the
generated PLC code before implementation in your IDE. For more information, see
“Working with the Static Code Metrics Report” on page 5-17.

The procedure is the same as generating the Traceability Report.

1 Open the Configuration Parameters dialog box and navigate to the PLC Code
Generation pane.

2 To enable report generation, select Report > Generate traceability report.
3 Click Apply.
4 Click PLC Code Generation > Generate code to initiate code and report

generation. The coder generates HTML report files as part of the code generation
process. The Code Metrics Report is shown on the left navigation pane.

 Create and Use Code Generation Reports

5-13

Generate a Traceability Report from the Command Line
To generate a Simulink PLC Coder code generation report from the command-line code
for the subsystem, plcdemo_simple_subsystem/SimpleSubsystem:

1 Open a Simulink PLC Coder model, for example:

open_system('plcdemo_simple_subsystem');
2 Enable the code generation parameter PLC_GenerateReport. To view the output in

the model web view, also enable PLC_GenerateWebview:

5 Code Generation Reports

5-14

set_param('plcdemo_simple_subsystem', 'PLC_GenerateReport', 'on');
set_param('plcdemo_simple_subsystem', 'PLC_GenerateWebView', 'on');

3 Generate the code.
generatedfiles = plcgeneratecode('plcdemo_simple_subsystem/SimpleSubsystem')

A traceability report is displayed. In your model, a View diagnostics hyperlink
appears at the bottom of the model window. Click this hyperlink to open the
Diagnostic Viewer window.

If the model web view is also enabled, that view is displayed.

 Create and Use Code Generation Reports

5-15

View Requirements Links from Generated Code
For requirements reviews, design reviews, traceability analysis, or project documentation,
you can create links to requirements documents from your model with the Simulink
Requirements™ software. If your model has links to requirements documents, you can
also view the links from the generated code.

Note The requirement links must be associated with a model object. If requirements
links are associated with the code in a MATLAB Function block, they do not appear in
generated code comments.

To view requirements from generated code:

1 From your model, create links to requirements documents.

See, “Requirements Management Interface” (Simulink Requirements).
2 For the subsystem for which you want to generate code, specify the following

configuration parameters.

Option Purpose
Include comments on page 12-16 Model information must appear in code

comments.
Generate traceability report on page
12-40

After code is generated, a Code
Generation Report must be produced.

3 Generate code.

The Code Generation Report opens. The links to requirements documents appear in
generated code comments. When you view the code in the Code Generation Report,
you can open the links from the comments.

5 Code Generation Reports

5-16

Working with the Static Code Metrics Report
In this section...
“Workflow for Static Code Metrics Report” on page 5-17
“Report Contents” on page 5-18
“Function Block Information” on page 5-19

You can use the information in the Static Code Metrics Report to assess the generated
code and make model changes before code implementation in your target IDE.

Before starting, you must familiarize yourself with potential code limitations of your IDE.
For example, some IDEs have limits on the number of variables or lines of code in a
function block.

For detailed instructions on generating the report, see “Generate a Static Code Metrics
Report” on page 5-13.

Workflow for Static Code Metrics Report
This is the basic workflow for using the Static Code Metrics Report with your model.

 Working with the Static Code Metrics Report

5-17

Report Contents
The Static Code Metrics Report is divided into the following sections:

• File Information: Reports high-level information about generated files, such as lines
and lines of code.

• Global Variables: Reports information about global variables defined in the
generated code.

• Global Constants: Reports information about global constants defined in the
generated code.

5 Code Generation Reports

5-18

• Function Block Information: Reports a table of metrics for each function block
generated from your model.

Function Block Information
You can use the information in the Function Block Information table to assess the
generated code before implementation in your IDE. The leftmost column of the table lists
function blocks with hyperlinks. Clicking a function block name leads you to the function
block location in the generated code. From here, you can trace from the code to the
model. For more information, see “Trace from Code to Model” on page 5-7.

 Working with the Static Code Metrics Report

5-19

Working with Tunable Parameters in
the Simulink PLC Coder
Environment

• “Block Parameters in Generated Code” on page 6-2
• “Control Appearance of Block Parameters in Generated Code” on page 6-5

6

Block Parameters in Generated Code
Block parameters appear in the generated code as variables. You can choose how the
variables appear in the generated code. For instance, you can control the following
variable characteristics:

• Whether the variables are inlined in generated code
• Whether the variables are local to a function block, global, or not defined

To control how the block parameters appear in the generated code, you can either define
the parameters as Simulink.Parameter objects in the MATLAB workspace or use the
Model Parameter Configuration dialog box. For more information, see “Control
Appearance of Block Parameters in Generated Code” on page 6-5.

Simulink PLC Coder exports tunable parameters as exported symbols and preserves the
names of these parameters in the generated code. It does not mangle these names. As a
result, if you use a reserved IDE keyword as a tunable parameter name, the code
generation can cause compilation errors in the IDE. As a best practice, do not use IDE
keywords as tunable parameter names.

The coder maps tunable parameters in the generated code as listed in the following table:

Target IDE Parameter Storage Class
SimulinkGlobal ExportedGlobal ImportedExtern Imported‐

ExternPointer
CoDeSys 2.3 Local function

block variables
Global variable Variable is not

defined in
generated code and
expected to be
defined externally.

Ignored. If you set
the parameter to
this value, the
software treats it
the same as
ImportedExtern.

CoDeSys 3.3 Local function
block variables

Global variable Variable is not
defined in
generated code and
expected to be
defined externally.

Ignored. If you set
the parameter to
this value, the
software treats it
the same as
ImportedExtern.

6 Working with Tunable Parameters in the Simulink PLC Coder Environment

6-2

Target IDE Parameter Storage Class
SimulinkGlobal ExportedGlobal ImportedExtern Imported‐

ExternPointer
CoDeSys 3.5 Local function

block variables
Global variable Variable is not

defined in
generated code and
expected to be
defined externally.

Ignored. If you set
the parameter to
this value, the
software treats it
the same as
ImportedExtern.

B&R
Automation
Studio 3.0

Local function
block variable

Local function
block variable

Local function
block variable.

Ignored. If you set
the parameter to
this value, the
software treats it
the same as
ImportedExtern.

Beckhoff
TwinCAT 2.11

Local function
block variable

Global variable Variable is not
defined in
generated code and
expected to be
defined externally.

Ignored. If you set
the parameter to
this value, the
software treats it
the same as
ImportedExtern.

KW-Software
MULTIPROG
5.0

Local function
block variable

Local function
block variable

Local function
block variable.

Ignored. If you set
the parameter to
this value, the
software treats it
the same as
ImportedExtern.

Phoenix
Contact PC
WORX 6.0

Local function
block variable

Global variable Variable is not
defined in
generated code and
expected to be
defined externally.

Ignored. If you set
the parameter to
this value, the
software treats it
the same as
ImportedExtern.

 Block Parameters in Generated Code

6-3

Target IDE Parameter Storage Class
SimulinkGlobal ExportedGlobal ImportedExtern Imported‐

ExternPointer
RSLogix 5000
17, 18: AOI

AOI local tags AOI input tags AOI input tags. Ignored. If you set
the parameter to
this value, the
software treats it
the same as
ImportedExtern.

RSLogix 5000
17, 18: Routine

Instance fields of
program UDT tags

Program tags Variable is not
defined in
generated code and
expected to be
defined externally.

Ignored. If you set
the parameter to
this value, the
software treats it
the same as
ImportedExtern.

Siemens
SIMATIC STEP
7

Local function
block variable

Local function
block variable

Local function
block variable.

Ignored. If you set
the parameter to
this value, the
software treats it
the same as
ImportedExtern.

Generic Local function
block variable

Global variable Variable is not
defined in
generated code and
expected to be
defined externally.

Ignored. If you set
the parameter to
this value, the
software treats it
the same as
ImportedExtern.

PLCopen Local function
block variable

Global variable Variable is not
defined in
generated code and
expected to be
defined externally.

Ignored. If you set
the parameter to
this value, the
software treats it
the same as
ImportedExtern.

6 Working with Tunable Parameters in the Simulink PLC Coder Environment

6-4

Control Appearance of Block Parameters in Generated
Code

Unless you use constants for block parameters in your model, they appear in the
generated code as variables. You can choose how these variables appear in the generated
code. For instance, you can control the following variable characteristics:

• Whether the variables are inlined in generated code
• Whether the variables are local to a function block, global, or not defined

For more information, see “Block Parameters in Generated Code” on page 6-2.

To control how the block parameters appear in the generated code:

1 Use variables instead of constants for block parameters.
2 Define these parameters in the MATLAB workspace in one of the following ways:

• Use a MATLAB script to create a Simulink.Parameter object. Run the script
every time that the model loads.

Simulink stores Simulink.Parameter objects outside the model. You can then
share Simulink.Parameter objects between multiple models.

• Use the Model Configuration Parameters dialog box to make the parameters
tunable.

Simulink stores global tunable parameters specified using the Configuration
Parameters dialog box with the model. You cannot share these parameters
between multiple models.

Note The MATLAB workspace parameter value must be of the same data type as
used in the model. Otherwise, the value of the variable in the generated code is set to
zero. See “Workspace Parameter Data Type Limitations” on page 11-4.

Configure Tunable Parameters with Simulink.Parameter
Objects
This example shows how to create and modify a Simulink.Parameter object.

 Control Appearance of Block Parameters in Generated Code

6-5

The model plcdemo_tunable_params_slparamobj illustrates these steps. The model
contains a Subsystem block SimpleSubsystem that has three Gain blocks with tunable
parameters, K1, K2, and K3.

1 Write a MATLAB script that defines the tunable parameters.

The following script setup_tunable_params.m creates the constants K1, K2, and
K3 as Simulink.Parameter objects, assigns values, and sets the storage classes for
these constants. For more information on the storage classes, see “Block Parameters
in Generated Code” on page 6-2.

% tunable parameter mapped to local variable
K1 = Simulink.Parameter;
K1.Value = 0.1;
K1.CoderInfo.StorageClass = 'Model default';

% tunable parameter mapped to global variable
K2 = Simulink.Parameter;
K2.Value = 0.2;
K2.CoderInfo.StorageClass = 'ExportedGlobal';

% tunable parameter mapped to global const
K3 = Simulink.Parameter;
K3.Value = 0.3;
K3.CoderInfo.StorageClass = 'Custom';
K3.CoderInfo.CustomStorageClass = 'Const';

2 Specify that the script setup_tunable_params.m must execute before the model
loads and that the MATLAB workspace must be cleared before the model closes.

a In the model window, go to the Modeling tab and select Model Properties from
the Model Settings drop-down.

b In the Model Properties dialog box, on the Callbacks tab, select PreLoadFcn.
Enter setup_tunable_params for Model pre-load function.

6 Working with Tunable Parameters in the Simulink PLC Coder Environment

6-6

c On the Callbacks tab, select CloseFcn. Enter clear K1 K2 K3; for Model
close function.

Every time that you open the model, the variables K1, K2, and K3 are loaded into the
base workspace. You can view the variables and their storage classes in the Model
Explorer.

3 Generate code and inspect it.

 Control Appearance of Block Parameters in Generated Code

6-7

Variable Storage Class Generated Code (3S CoDeSys
2.3)

K1 Model default K1 is a local function block variable.

FUNCTION_BLOCK SimpleSubsystem
.
.
VAR
 K1: LREAL := 0.1;
 .
 .
END_VAR
.
.
END_FUNCTION_BLOCK

K2 ExportedGlobal K2 is a global variable.

VAR_GLOBAL
 K2: LREAL := 0.2;
END_VAR

K3 CoderInfo.CustomStorageClass
set to Const.

K3 is a global constant.

VAR_GLOBAL CONSTANT
 SS_INITIALIZE: SINT := 0;
 K3: LREAL := 0.3;
 SS_STEP: SINT := 1;
END_VAR

Make Parameters Tunable Using Configuration Parameters
Dialog Box
This example shows how to make parameters tunable using the Model Configuration
Parameters dialog box.

The model plcdemo_tunable_params illustrates these steps. The model contains a
Subsystem block SimpleSubsystem that has three Gain blocks with tunable parameters,
K1, K2, and K3.

1 Specify that the variables K1, K2, and K3 must be initialized before the model loads
and that the MATLAB workspace must be cleared before the model closes.

6 Working with Tunable Parameters in the Simulink PLC Coder Environment

6-8

a In the Modeling tab and select Model Properties from the Model Settings
drop-down.

b In the Model Properties dialog box, on the Callbacks tab, select PreLoadFcn.
Enter K1=0.1; K2=0.2; K3=0.3; for Model pre-load function.

c On the Callbacks tab, select CloseFcn. Enter clear K1 K2 K3; for Model
close function.

2 On the Modeling tab and select Model Settings to open the Configuration
Parameters dialog box.

3 Navigate to Optimization pane. Specify that all parameters must be inlined in the
generated code. Select Inlined for Default Parameter Behavior.

4 To override the inlining and make individual parameters tunable, click Configure. In
the Model Parameter Configuration dialog box, from the Source list, select
Referenced workspace variables.

5 Ctrl+select the parameters and click Add to table >>.

By default, this dialog box sets all parameters to the SimulinkGlobal storage class.
Set the Storage class and Storage type qualifier as shown in this figure. For more
information on the storage classes, see “Block Parameters in Generated Code” on
page 6-2.

 Control Appearance of Block Parameters in Generated Code

6-9

6 Generate code and inspect it.

6 Working with Tunable Parameters in the Simulink PLC Coder Environment

6-10

Variable Storage Class Generated Code (3S CoDeSys 2.3)
K1 SimulinkGlobal K1 is a local function block variable.

FUNCTION_BLOCK SimpleSubsystem
.
.
VAR
 K1: LREAL := 0.1;
 .
 .
END_VAR
.
.
END_FUNCTION_BLOCK

K2 ExportedGlobal K2 is a global variable.

VAR_GLOBAL
 K2: LREAL := 0.2;
END_VAR

K3 CoderInfo.CustomStorag
eClass and Storage type
qualifier set to Const.

K3 is a global constant.

VAR_GLOBAL CONSTANT
 SS_INITIALIZE: SINT := 0;
 K3: LREAL := 0.3;
 SS_STEP: SINT := 1;
END_VAR

 Control Appearance of Block Parameters in Generated Code

6-11

Controlling Generated Code
Partitions

• “Generate Global Variables from Signals in Model” on page 7-2
• “Control Code Partitions for Subsystem Block” on page 7-3
• “Control Code Partitions for MATLAB Functions in Stateflow Charts” on page 7-9

7

Generate Global Variables from Signals in Model
If you want to generate a global variable in your code, use a global Data Store Memory
block based on a Simulink.Signal object in your model.

1 Set up a data store in your model by using a Data Store Memory block.
2 Associate a Simulink.Signal object with the data store.

a In the model workspace, define a Simulink.Signal object with the same name
as the data store. Set the storage class of the object to ExportedGlobal or
ImportedExtern.

b Use the Model Data Editor to enable the Data store name must resolve to
Simulink signal object parameter of the Data Store Memory block. To use the
Model Data Editor in a model, on the Modeling tab, select Model Data Editor
under the Design category. On the Data Stores tab, set the Change View drop-
down to Code. Enable Resolve for the Data Store Memory block. For more
information, see “Configure Data Properties by Using the Model Data Editor”
(Simulink) .

3 In your model, attach the signals that you want to Data Store Read blocks that read
from the data store and Data Store Write blocks that write to the data store.

The Simulink.Signal object that is associated with the global Data Store Memory
block appears as a global variable in generated code.

Note If you follow this workflow for Rockwell Automation RSLogix 5000 AOIs, the
generated code uses INOUT variables for the global data.

7 Controlling Generated Code Partitions

7-2

Control Code Partitions for Subsystem Block
Simulink PLC Coder converts subsystems to function block units according to the
following rules:

• Generates a function block for the top-level atomic subsystem for which you generate
code.

• Generates a function block for an atomic subsystem whose Function packaging
parameter is set to Reusable function.

• Inlines generated code from atomic subsystems, whose Function packaging
parameter is set to Inline, into the function block that corresponds to the nearest
ancestor subsystem. This nearest ancestor cannot be inlined.

For code generation from a subsystem with no inputs or outputs, you must set the
Function packaging parameter of the block to Reusable function.

These topics use code generated with CoDeSys Version 2.3.

Control Code Partitions Using Subsystem Block Parameters
You can partition generated code using the following Subsystem block parameters on the
Code Generation tab. See the Subsystem block documentation for details.

• Function packaging
• Function name options

Leave the File name options set to the default, Auto.

Generating Separate Partitions and Inlining Subsystem Code

Use the Function packaging parameter to specify the code format to generate for an
atomic (nonvirtual) subsystem. The Simulink PLC Coder software interprets this
parameter depending on the setting that you choose:

Setting Coder Interpretation
Auto Uses the optimal format based on the type

and number of subsystem instances in the
model.

 Control Code Partitions for Subsystem Block

7-3

Setting Coder Interpretation
Reusable function Generates a function with arguments that

allows reuse of subsystem code when a
model includes multiple instances of the
subsystem.

Nonreusable function The Simulink PLC Coder does not support
Nonreusable function packaging. See,
“Permanent Limitations” on page 11-7.

Inline Inlines the subsystem unconditionally.

For example, in the plcdemo_hierarchical_virtual_subsystem, you can:

• Inline the S1 subsystem code by setting Function packaging to Inline. This setting
creates one function block for the parent with the S1 subsystem inlined.

• Create a function block for the S2 subsystem by setting Function packaging to
Reusable function or Auto. This setting creates two function blocks, one for the
parent, one for S2.

Changing the Name of a Subsystem

You can use the Function name options parameter to change the name of a subsystem
from the one on the block label. When the Simulink PLC Coder generates software, it uses
the string you specify for this parameter as the subsystem name. For example, see
plcdemo_hierarchical_virtual_subsystem:

7 Controlling Generated Code Partitions

7-4

1 Open the S1 subsystem block parameter dialog box.
2 If the Treat as atomic unit check box is not yet selected, select it.
3 Click the Code Generation tab.
4 Set Function packaging to Reusable function.
5 Set Function name options to User specified.
6 In the Function name field, specify a custom name. For example, type

my_own_subsystem.

7 Save the new settings.
8 Generate code for the parent subsystem.
9 Observe the renamed function block.

 Control Code Partitions for Subsystem Block

7-5

One Function Block for Atomic Subsystems
The code for plcdemo_simple_subsystem is an example of generating code with one
function block. The atomic subsystem for which you generate code does not contain other
subsystems.

One Function Block for Virtual Subsystems
The plcdemo_hierarchical_virtual_subsystem example contains an atomic
subsystem that has two virtual subsystems, S1 and S2, inlined. A virtual subsystem does
not have the Treat as atomic unit parameter selected. When you generate code for the
hierarchical subsystem, the code contains only the FUNCTION_BLOCK

7 Controlling Generated Code Partitions

7-6

HierarchicalSubsystem component. There are no additional function blocks for the S1
and S2 subsystems.

Multiple Function Blocks for Nonvirtual Subsystems
The plcdemo_hierarchical_subsystem example contains an atomic subsystem that
has two nonvirtual subsystems, S1 and S2. Virtual subsystems have the Treat as atomic
unit parameter selected. When you generate code for the hierarchical subsystem, that
code contains the FUNCTION_BLOCK HierarchicalSubsystem, FUNCTION_BLOCK S1,
and FUNCTION_BLOCK S2 components.

 Control Code Partitions for Subsystem Block

7-7

7 Controlling Generated Code Partitions

7-8

Control Code Partitions for MATLAB Functions in
Stateflow Charts

Simulink PLC Coder inlines MATLAB functions in generated code based on your inlining
specifications. To specify whether to inline a function:

1 Right-click the MATLAB function and select Properties.
2 For Function Inline Option, select Inline if you want the function to be inlined.

Select Function if you do not want the function to be inlined. For more information,
see “Specify MATLAB Function Properties in a Chart” (Stateflow).

However, Simulink PLC Coder does not follow your inlining specifications exactly in the
following cases:

• If a MATLAB function accesses data that is local to the chart, it is inlined in generated
code even if you specify that the function must not be inlined.

Explanation: The chart is converted to a function block in generated code. If the
MATLAB function in the chart is converted to a Structured Text function, it cannot
access the data of an instance of the function block. Therefore, the MATLAB function
cannot be converted to a Structured Text function in generated code and is inlined.

• If a MATLAB function has multiple outputs and you specify that the function must not
be inlined, it is converted to a function block in generated code.

Explanation: A Structured Text function cannot have multiple outputs, therefore the
MATLAB function cannot be converted to a Structured Text function.

The following simple example illustrates the different cases. The model used here has a
Stateflow chart that contains four MATLAB functions fcn1 to fcn4.

Here is the model.

 Control Code Partitions for MATLAB Functions in Stateflow Charts

7-9

Here is the Stateflow chart.

7 Controlling Generated Code Partitions

7-10

 Control Code Partitions for MATLAB Functions in Stateflow Charts

7-11

The functions fcn1 to fcn4 are defined as follows.

Function Inlining
Specification

Generated Code

fcn1:

function y = fcn1(u)
y = u+1;

Specify that the
function must be
inlined.

fcn1 is inlined in the generated
code.

is_c3_Chart := Chart_IN_A;
(* Outport: '<Root>/y1'
 incorporates:
 * Inport: '<Root>/u1' *)
(* Entry 'A': '<S1>:10' *)
(* MATLAB Function 'fcn1':
 '<S1>:1' *)
(* '<S1>:1:3' *)
y1 := u1 + 1.0;

fcn2:

function y = fcn2(u)
y = u+2;

Specify that the
function must not be
inlined.

fcn2 is not inlined in the generated
code.

is_c3_Chart := Chart_IN_B;
(* Outport: '<Root>/y2'
 incorporates:
 * Inport: '<Root>/u2' *)
(* Entry 'B': '<S1>:11' *)
 y2 := fcn2(u := u2);
.
.
.
FUNCTION fcn2: LREAL
VAR_INPUT
 u: LREAL;
END_VAR
VAR_TEMP
END_VAR
(* MATLAB Function 'fcn2':
 '<S1>:4' *)
(* '<S1>:4:3' *)
fcn2 := u + 2.0;
END_FUNCTION

7 Controlling Generated Code Partitions

7-12

Function Inlining
Specification

Generated Code

fcn3:

function y = fcn3(u)
% The function accesses
% local data x of
% parent chart
y = u+3+x;

Specify that the
function must not be
inlined.

fcn3 is inlined in the generated
code because it accesses local data
from the Stateflow chart.

is_c3_Chart := Chart_IN_C;
(* Outport: '<Root>/y3'
 incorporates:
 * Inport: '<Root>/u3' *)
(* Entry 'C': '<S1>:15' *)
(* MATLAB Function 'fcn3':
 '<S1>:9' *)
(* The function accesses
 local data x of parent
 chart *)
(* '<S1>:9:4' *)
y3 := (u3 + 3.0) + x;

 Control Code Partitions for MATLAB Functions in Stateflow Charts

7-13

Function Inlining
Specification

Generated Code

fcn4:

function [yy1,yy2] =
 fcn4(u)
yy1 = u+4;
yy2 = u+5;

Specify that the
function must not be
inlined.

fcn4 is converted to a function
block in the generated code because
it has multiple outputs.

is_c3_Chart := Chart_IN_D;
(* Entry 'D': '<S1>:28' *)
i0_fcn4(u := u4);
b_y4 := i0_fcn4.yy1;
b_y5 := i0_fcn4.yy2;
(* Outport: '<Root>/y4'
 incorporates:
 * Inport: '<Root>/u4' *)
y4 := b_y4;
(* Outport: '<Root>/y5' *)
y5 := b_y5;
.
.
.
FUNCTION_BLOCK fcn4
VAR_INPUT
 u: LREAL;
END_VAR
VAR_OUTPUT
 yy1: LREAL;
 yy2: LREAL;
END_VAR
VAR
END_VAR
VAR_TEMP
END_VAR
(* MATLAB Function 'fcn4':
 '<S1>:26' *)
(* '<S1>:26:3' *)
yy1 := u + 4.0;
(* '<S1>:26:4' *)
yy2 := u + 5.0;
END_FUNCTION_BLOCK

7 Controlling Generated Code Partitions

7-14

Integrating Externally Defined
Identifiers

• “Integrate Externally Defined Identifiers” on page 8-2
• “Integrate Custom Function Block in Generated Code” on page 8-3

8

Integrate Externally Defined Identifiers
The coder allows you to suppress identifier (symbol) definitions in the generated code.
This suppression allows you to integrate a custom element, such as user-defined function
blocks, function blocks, data types, and named global variable and constants, in place of
one generated from a Simulink subsystem. You must then provide these definitions when
importing the code into the target IDE. You must:

• Define the custom element in the subsystem for which you want to generate code.
• Name the custom element.
• In the Configuration Parameters dialog box, add the name of the custom element to

PLC Code Generation > Identifiers > Externally Defined Identifiers in the
Configuration Parameters dialog box.

• Generate code.

For a description of how to integrate a custom function block, see “Integrate Custom
Function Block in Generated Code” on page 8-3. For a description of the Externally
Defined Identifiers parameter, see “Externally Defined Identifiers” on page 12-36.

8 Integrating Externally Defined Identifiers

8-2

Integrate Custom Function Block in Generated Code
To integrate a custom function block, ExternallyDefinedBlock, this procedure uses the
example plcdemo_external_symbols.

1 In a Simulink model, add a MATLAB Function block.
2 Double-click the MATLAB Function block.
3 In the MATLAB editor, minimally define inputs, outputs, and stubs. For example:

function Y = fcn(U,V)
% Stub behavior for simulation. This block
% is replaced during code generation
Y = U + V;

4 Change the MATLAB Function block name to ExternallyDefinedBlock.
5 Create a subsystem from this MATLAB Function block.
6 Complete the model to look like plcdemo_external_symbols.

 Integrate Custom Function Block in Generated Code

8-3

matlab:plcdemo_external_symbols
matlab:plcdemo_external_symbols

7 Open the Configuration Parameters dialog box for the model.
8 Add ExternallyDefinedBlock to PLC Code Generation > Identifiers >

Externally Defined Identifiers.
9 The plcdemo_external_symbols model also suppresses K1 and InBus. Add these

symbol names to the Externally Defined Identifiers field, separated by spaces or
commas. For other settings, see the plcdemo_external_symbols model.

8 Integrating Externally Defined Identifiers

8-4

10 Save and close your new model. For example, save it as
plcdemo_external_symbols_mine.

11 Generate code for the model.
12 In the generated code, look for instances of ExternallyDefinedBlock.

The reference of ExternallyDefinedBlock is:

The omission of ExternallyDefinedBlock is:

 Integrate Custom Function Block in Generated Code

8-5

IDE-Specific Considerations

• “Integrate Generated Code with Siemens IDE Project” on page 9-2
• “Use Internal Signals for Debugging in RSLogix 5000 IDE” on page 9-4
• “Rockwell Automation RSLogix Considerations” on page 9-6
• “Considerations for Siemens IDEs” on page 9-8

9

Integrate Generated Code with Siemens IDE Project
You can integrate generated code with an existing Siemens SIMATIC STEP 7 or Siemens
TIA Portal project. For more information on:

• How to generate code, see “Generate and Examine Structured Text Code” on page 1-
11.

• The location of generated code, see “Files Generated with Simulink PLC Coder” on
page 1-17.

Integrate Generated Code with Siemens SIMATIC STEP 7
Projects
1 In the Siemens SIMATIC STEP 7 project, right-click the Sources node and select

Insert New Object > External Source.
2 Navigate to the folder containing the generated code and open the file.

Unless you assigned a custom name, the file is called model_name.scl. After you
open the file, a new entry called model_name.scl appears under the Sources node.

3 Double-click the new entry. The generated code is listed in the SCL editor window.
4 In the SCL editor window, select Options > Customize.
5 In the customize window, select Create block numbers automatically, and click

OK.

Symbol addresses are automatically generated for Subsystem blocks.
6 In the SCL editor window, compile the model_name.scl file for the Subsystem

block.

The new Function Block is now integrated and available for use with the existing Siemens
SIMATIC STEP 7 project.

Integrate Generated Code with Siemens TIA Portal Projects
1 In the Project tree pane, on the Devices tab, under the External source files node

in your project, select Add new external file.
2 Navigate to the folder containing the generated code and open the file.

9 IDE-Specific Considerations

9-2

Unless you assigned a custom name, the file is called model_name.scl. After you
open the file, a new entry called model_name.scl appears under the External
source files node.

3 Right-click the new entry and select Generate blocks from source.

The Siemens TIA Portal IDE compiles the new file and generates TIA Portal program
blocks from the code. The program blocks appear under the Program blocks node.
They are available for use with the existing Siemens TIA Portal project.

 Integrate Generated Code with Siemens IDE Project

9-3

Use Internal Signals for Debugging in RSLogix 5000 IDE
For debugging, you can generate code for test point outputs from the top-level subsystem
of your model. The coder generates code that maps the test pointed output to optional
AOI output parameters for RSLogix 5000 IDEs. In the generated code, the variable tags
that correspond to the test points have the property Required=false. This example
assumes that you have a model appropriately configured for the coder, such as
plcdemo_simple_subsystem.

1 Open the plcdemo_simple_subsystem model.

plcdemo_simple_subsystem
2 In the Configuration Parameters dialog box, set Target IDE to Rockwell RSLogix

5000: AOI.
3 In the top-level subsystem of the model, right-click the output signal of

SimpleSubsystem and select Properties.

The Signal Properties dialog box is displayed.
4 On the Logging and accessibility tab, click the Test point check box.

9 IDE-Specific Considerations

9-4

5 Click OK.
6 Generate code for the top-level subsystem.
7 Inspect the generated code for the string Required=false.

For more information on signals with test points, see “What Is a Test Point?” (Simulink).

 Use Internal Signals for Debugging in RSLogix 5000 IDE

9-5

Rockwell Automation RSLogix Considerations
Following are considerations for this target IDE platform.

Add-On Instruction and Function Blocks
The Structured Text concept of function block exists for Rockwell Automation RSLogix
target IDEs as an Add-On instruction (AOI). The Simulink PLC Coder software generates
AOIs for Add-On instruction format, not FUNCTION_BLOCK.

Double-Precision Data Types
The Rockwell Automation RSLogix target IDE does not support double-precision data
types. At code generation, the Simulink PLC Coder converts this data type to single-
precision data types in generated code.

Design your model to use single-precision data type (single) as much as possible instead
of double-precision data type (double). If you must use doubles in your model, the
numerical results produced by the generated Structured Text can differ from Simulink
results. This difference is due to double-single conversion in the generated code.

Unsigned Integer Data Types
The Rockwell Automation RSLogix target IDE does not support unsigned integer data
types. At code generation, the Simulink PLC Coder converts this data type to signed
integer data types in generated code.

Design your model to use signed integer data types (int8, int16, int32) as much as
possible instead of unsigned integer data types (uint8, uint16, uint32). Doing so avoids
overflow issues that unsigned-to-signed integer conversions can cause in the generated
code.

Unsigned Fixed-Point Data Types
In the generated code, Simulink PLC Coder converts fixed-point data types to target IDE
integer data types. Because the Rockwell Automation RSLogix target IDE does not
support unsigned integer data types, do not use unsigned fixed-point data types in the
model. For more information about coder limitations for fixed-point data type support, see
“Fixed-Point Data Type Limitations” on page 11-4.

9 IDE-Specific Considerations

9-6

Enumerated Data Types
The Rockwell Automation RSLogix target IDE does not support enumerated data types. At
code generation, the Simulink PLC Coder converts this data type to 32–bit signed integer
data type in generated code.

 Rockwell Automation RSLogix Considerations

9-7

Considerations for Siemens IDEs
Following are considerations for this target IDE platform.

Double-Precision Floating-Point Data Types
The Siemens SIMATIC STEP 7 target IDE does not support double-precision floating-point
data types. At code generation, the Simulink PLC Coder converts this data type to single-
precision real data types in the generated code. Design your model so that the possible
precision loss of numerical results of the generated code does not change the expected
semantics of the model.

For Siemens PLC devices that support double-precision floating point types, use Siemens
TIA Portal: Double Precision as Target IDE for generating code. The generated
code uses the LREAL type for double-precision floating point types in the model. For more
information, see “Target IDE” on page 12-4.

int8 and Unsigned Integer Types
The SCL language for Siemens IDEs does not support int8 and unsigned integer data
types. At code generation, the Simulink PLC Coder converts int8 and unsigned integer
data types to int16 or int32 in the generated code.

Design your model to use int16 and int32 data types as much as possible instead of int8
or unsigned integer data types. The Simulink numerical results using int8 or unsigned
integer data types can differ from the numerical results produced by the generated
Structured Text.

Design your model so that effects of integer data type conversion of the generated code
do not change the expected semantics of the model.

Unsigned Fixed-Point Data Types
In the generated code, Simulink PLC Coder converts fixed-point data types to target IDE
integer data types. Because the Siemens target IDEs do not support unsigned integer
data types, do not use unsigned fixed-point data types in the model. For more information
about coder limitations for fixed-point data type support, see “Fixed-Point Data Type
Limitations” on page 11-4.

9 IDE-Specific Considerations

9-8

Enumerated Data Types
The Siemens SIMATIC STEP 7 target IDE does not support enumerated data types. The
Siemens SIMATIC STEP 7 converts this data type to 16–bit signed integer data type in the
generated code.

INOUT Variables
The Siemens SIMATIC STEP 7 and the TIA Portal single-precision targets do not support
INOUT variables. If your Simulink model contains MATLAB Function blocks with y = f (y)
style in-place variables, coder generates code using normal input and output variables.
However, if the code generation option for the MATLAB Function block is set to use
Reusable function, this conversion is not possible. To fix this issue, rewrite the MATLAB
Function block without using in-place variables or change the block code generation
option to either Auto or Inline.

 Considerations for Siemens IDEs

9-9

Supported Simulink and Stateflow
Blocks

10

Supported Blocks
For Simulink semantics not supported by Simulink PLC Coder, see “Coder Limitations” on
page 11-2.

View Supported Blocks Library
To view a Simulink library of blocks that the Simulink PLC Coder software supports, type
plclib in the Command Window. The coder can generate Structured Text code for
subsystems that contain these blocks. The library window is displayed.

10 Supported Simulink and Stateflow Blocks

10-2

This library contains two sublibraries, Simulink and Stateflow. Each sublibrary contains
the blocks that you can include in a Simulink PLC Coder model.

Supported Simulink Blocks
The coder supports the following Simulink blocks.

Additional Math & Discrete/Additional Discrete

Transfer Fcn Direct Form II

Transfer Fcn Direct Form II Time Varying

Unit Delay Enabled (Obsolete)

Unit Delay Enabled External IC (Obsolete)

Unit Delay Enabled Resettable (Obsolete)

Unit Delay Enabled Resettable External IC (Obsolete)

Unit Delay External IC (Obsolete)

Unit Delay Resettable (Obsolete)

Unit Delay Resettable External IC (Obsolete)

Unit Delay With Preview Enabled (Obsolete)

Unit Delay With Preview Enabled Resettable (Obsolete)

Unit Delay With Preview Enabled Resettable External RV (Obsolete)

Unit Delay With Preview Resettable (Obsolete)

Unit Delay With Preview Resettable External RV (Obsolete)

Commonly Used Blocks

Inport

Bus Creator

 Supported Blocks

10-3

Bus Selector

Constant

Data Type Conversion

Demux

Discrete-Time Integrator

Gain

Ground

Logical Operator

Mux

Product

Relational Operator

Saturation

Scope

Subsystem

Inport

Outport

Sum

Switch

Terminator

Unit Delay

Discontinuities

Coulomb and Viscous Friction

10 Supported Simulink and Stateflow Blocks

10-4

Dead Zone Dynamic

Rate Limiter

Rate Limiter Dynamic

Relay

Saturation

Saturation Dynamic

Wrap To Zero

Discrete

Difference

Discrete Transfer Fcn

Discrete Derivative

Discrete FIR Filter

Discrete Filter

Discrete PID Controller

Discrete PID Controller (2 DOF)

Discrete State-Space

Discrete-Time Integrator

Integer Delay

Memory

Tapped Delay

Transfer Fcn First Order

Transfer Fcn Lead or Lag

 Supported Blocks

10-5

Transfer Fcn Real Zero

Unit Delay

Zero-Order Hold

Logic and Bit Operations

Bit Clear

Bit Set

Bitwise Operator

Compare To Constant

Compare To Zero

Detect Change

Detect Decrease

Detect Increase

Detect Fall Negative

Detect Fall Nonpositive

Detect Rise Nonnegative

Detect Rise Positive

Extract Bits

Interval Test

Interval Test Dynamic

Logical Operator

Shift Arithmetic

10 Supported Simulink and Stateflow Blocks

10-6

Lookup Tables

Dynamic-Lookup

Interpolation Using Prelookup

PreLookup

n-D Lookup Table

Math Operations

Abs

Add

Assignment

Bias

Divide

Dot Product

Gain

Math Function

Matrix Concatenate

MinMax

MinMax Running Resettable

Permute Dimensions

Polynomial

Product

Product of Elements

Reciprocal Sqrt

 Supported Blocks

10-7

Reshape

Rounding Function

Sign

Slider Gain

Sqrt

Squeeze

Subtract

Sum

Sum of Elements

Trigonometric Function

Unary Minus

Vector Concatenate

Model Verification

Assertion

Check Discrete Gradient

Check Dynamic Gap

Check Dynamic Range

Check Static Gap

Check Static Range

Check Dynamic Lower Bound

Check Dynamic Upper Bound

Check Input Resolution

10 Supported Simulink and Stateflow Blocks

10-8

Check Static Lower Bound

Check Static Upper Bound

Model-Wide Utilities

DocBlock

Model Info

Ports & Subsystems

Atomic Subsystem

CodeReuse Subsystem

Enabled Subsystem

Enable

Function-Call Subsystem

Subsystem

Inport

Outport

Signal Attributes

Data Type Conversion

Data Type Duplicate

Signal Conversion

Signal Routing

Bus Assignment

Bus Creator

Bus Selector

 Supported Blocks

10-9

Data Store Memory

Demux

From

Goto

Goto Tag Visibility

Index Vector

Multiport Switch

Mux

Selector

Sinks

Display

Floating Scope

Scope

Stop Simulation

Terminator

To File

To Workspace

XY Graph

Sources

Constant

Counter Free-Running

Counter Limited

10 Supported Simulink and Stateflow Blocks

10-10

Enumerated Constant

Ground

Pulse Generator

Repeating Sequence Interpolated

Repeating Sequence Stair

User-Defined Functions

MATLAB Function (MATLAB Function Block)

Supported Stateflow Blocks
The coder supports the following Stateflow blocks.

Stateflow

Chart

State Transition Table

Truth Table

Blocks with Restricted Support
Simulink Block Support Exceptions

The Simulink PLC Coder software supports the plclib blocks with the following
exceptions. Also, see “Coder Limitations” on page 11-2 for a list of limitations of the
software.

If you get unsupported fixed-point type messages during code generation, update the
block parameter. Open the block parameter dialog box. Navigate to the Signal
Attributes and Parameter Attributes tabs. Check that the Output data type and
Parameter data type parameters are not Inherit: Inherit via internal rule.
Set these parameters to either Inherit: Same as input or a desired non-fixed-point
data type, such as double or int8.

 Supported Blocks

10-11

Stateflow Chart Exceptions

If you receive a message about consistency between the original subsystem and the S-
function generated from the subsystem build, and the model contains a Stateflow chart
that contains one or more Simulink functions, use the following procedure to address the
issue:

1 Open the model and double-click the Stateflow chart that causes the issue.

The chart Stateflow Editor dialog box is displayed.
2 Right-click in this dialog box.
3 In the context-sensitive menu, select Properties.

The Chart dialog box is displayed.
4 In the Chart dialog box, navigate to the States When Enabling parameter and

select Held.
5 Click Apply and OK and save the model.

Data Store Memory Block

To generate PLC code for a model that uses a Data Store Memory block, first define a
Simulink.Signal object in the base workspace. Then, in the Signal Attributes tab of
the block parameters, set the data store name to resolve to that Simulink.Signal
object.

For more information, see “Data Stores with Data Store Memory Blocks” (Simulink).

Reciprocal Sqrt Block

The Simulink PLC Coder software does not support the Simulink Reciprocal Sqrt block
signedSqrt and rSqrt functions.

Lookup Table Blocks

Simulink PLC Coder has limited support for lookup table blocks. The coder does not
support:

• Number of dimensions greater than 2
• Cubic spline interpolation method
• Begin index search using a previous index mode

10 Supported Simulink and Stateflow Blocks

10-12

• Cubic spline extrapolation method

Note The Simulink PLC Coder software does not support the Simulink Lookup Table
Dynamic block. For your convenience, the plclib/Simulink/Lookup Tables library contains
an implementation of a dynamic table lookup block using the Prelookup and Interpolation
Using Prelookup blocks.

 Supported Blocks

10-13

Limitations

11

Coder Limitations
In this section...
“Current Limitations” on page 11-2
“rand Function Support Limitations” on page 11-3
“Workspace Parameter Data Type Limitations” on page 11-4
“Traceability Report Limitations” on page 11-4
“Fixed-Point Data Type Limitations” on page 11-4
“Multirate Model Limitations” on page 11-6
“Permanent Limitations” on page 11-7

Current Limitations
The Simulink PLC Coder software does not support the following Simulink semantics:

• Complex data types
• String data types
• Model reference
• Stateflow machine-parented data and events
• Stateflow messages
• Limited support for math functions
• Merge block
• Step block
• Clock block
• Signal and state storage classes
• Shared state variables between subsystems
• Virtual buses at the input ports of the top-level Atomic Subsystem block
• For Each Subsystem block
• Variable-size signals and parameters
• Objects defined in the Simulink data dictionary, including model parameters, signals,

and state objects.

11 Limitations

11-2

• MATLAB System block or system objects
• MATLAB classes.
• Width block

Use a MATLAB Function block instead. In the MATLAB function on the block, use the
length function to compute input vector width.

• Cell arrays in MATLAB Function blocks
• In MATLAB Function blocks, only standard MATLAB functions are supported.

Functions from toolboxes have not been tested and may result in issues during code
generation or produce incorrect results. For a list of standard functions supported for
code generation, see the items listed under the MATLAB category in the “Functions
and Objects Supported for C/C++ Code Generation” (Simulink) table.

• The use of Simulink.CoderInfo Alias name property with Simulink.Parameter
and Simulink.Signal objects.

• Simulink.Signal is supported only with data Store memory objects.
• Simulink PLC Coder does not support code generation for Simulink signals that

resolve to a Simulink.Signal object. If the Signal name must resolve to Simulink
signal object property is enabled or if this option is set programmatically by using the
MustResolveToSignalObject port parameter, the software generates incorrect
PLC code. The generated code can result in unexpected behavior such as having
unassigned output variables.

rand Function Support Limitations
Simulink PLC Coder generates Structured Text code for MATLAB Function blocks and
Stateflow charts that use rand functions from the library. The rand function is
implemented using a pseudo random number generator that only works with PLC IDEs
supporting the uint32 data type. The software has conformance checks to report
diagnostics for incompatible targets. Currently, the following targets have been tested for
rand function support.

• 3S-Smart Software Solutions CODESYS Version 2.3 or 3.3 or 3.5 (SP4 or later)
• B&R Automation Studio 3.0 or 4.0
• Beckhoff TwinCAT 2.11 or 3
• OMRON Sysmac Studio Version 1.04, 1.05, 1.09 or 1.12
• Rexroth IndraWorks version 13V12 IDE

 Coder Limitations

11-3

• Generic
• PLCopen XML

Workspace Parameter Data Type Limitations
If the data type of the MATLAB work space parameter value does not match that of the
block parameter used in your model, the value of the variable in the generated code is set
to zero.

If you specify the type of the Simulink.Parameter object by using the DataType
property, use a typed expression when assigning a value to the parameter object. For
example, if the Simulink.Parameter object K1 is used to store a value of the type
single, use a typed expression such as single(0.3) when assigning a value to K1.

K1 = Simulink.Parameter;
K1.Value = single(0.3);
K1.StorageClass = 'ExportedGlobal';
K1.DataType = 'single';

Traceability Report Limitations
Simulink PLC Coder does not generate a traceability report file when generating Ladder
Diagrams from Stateflow charts. However, traceability report file is generated when
generating Structured Text from Stateflow charts.

Fixed-Point Data Type Limitations
Simulink PLC Coder software supports the fixed-point data type. To generate code for
fixed-point data types, configure block and model parameters as described in this topic.

Note If you do not configure the blocks and models as directed, the generated Structured
Text might:

• Not compile.
• Compile, but return results that differ from the simulation results.

11 Limitations

11-4

Block Parameters

Properly configure block parameters:

1 If the block in the subsystem has a Signal Attributes tab, navigate to that tab.
2 For the Integer rounding mode parameter, select Round.
3 Clear the Saturate on integer overflow check box.
4 For the Output data type parameter, select a fixed-point data type.
5 Click the Data Type Assistant button.
6 For the Word length parameter, enter 8, 16, or 32.
7 For the Mode parameter, select Fixed point.
8 For the Scaling parameter, select Binary point.

9 Click OK.

Be sure to edit the model configuration parameters (see “Model Configuration
Parameters” on page 11-5).

Model Configuration Parameters

Properly configure model configuration parameters:

 Coder Limitations

11-5

1 In model Configuration Parameters dialog box, click the Hardware
Implementation node.

2 For the Device vendor parameter, select Generic.
3 For the Device type, select Custom.
4 For the Signed integer division rounds to, select Zero.
5 For the Number of bits, set char to 16.

Multirate Model Limitations
To generate Structured Text from a multirate model, you must configure the model as
follows:

• Change any continuous time input signals in the top-level subsystem to use discrete
fixed sample times.

• For the solver, select single-tasking execution.

The B&R Automation Studio IDE is not supported for multirate model code generation.

When you deploy code generated from a multirate model, you must run the code at the
fundamental sample rate.

11 Limitations

11-6

Permanent Limitations
The Structured Text language has inherent restrictions. As a result, the Simulink PLC
Coder software has the following restrictions:

• The Simulink PLC Coder software supports code generation only for atomic
subsystems.

• The Simulink PLC Coder software supports automatic, inline, or reusable function
packaging for code generation. Nonreusable function packaging is not supported.

• No blocks that require continuous time semantics. This restriction includes continuous
integrators, zero-crossing blocks, physical modeling blocks, and so on.

• No pointer data types.
• No recursion (including recursive events).
• Nonfinite data, for example NaN or Inf, is not supported.

 Coder Limitations

11-7

Configuration Parameters for
Simulink PLC Coder Models

• “PLC Coder: General” on page 12-2
• “PLC Coder: Comments” on page 12-15
• “PLC Coder: Optimization” on page 12-20
• “PLC Coder: Identifiers” on page 12-29
• “PLC Coder: Report” on page 12-39

12

PLC Coder: General

In this section...
“PLC Coder: General Tab Overview” on page 12-3
“Target IDE” on page 12-4
“Show Full Target List” on page 12-6
“Target IDE Path” on page 12-7
“Code Output Directory” on page 12-9
“Generate Testbench for Subsystem” on page 12-9

12 Configuration Parameters for Simulink PLC Coder Models

12-2

In this section...
“Include Testbench Diagnostic Code” on page 12-10
“Generate Functions Instead of Function Block” on page 12-11
“Suppress Auto-Generated Data Types” on page 12-12
“Emit Datatype Worksheet Tags for PCWorx” on page 12-12
“Aggressively Inline Structured Text Function Calls” on page 12-13

PLC Coder: General Tab Overview
Set up general information about generating Structured Text code to download to target
PLC IDEs.

Configuration

To enable the Simulink PLC Coder options pane, you must:

1 Create a model.
2 Add either an Atomic Subsystem block, or a Subsystem block for which you have

selected the Treat as atomic unit check box.
3 Right-click the subsystem block and select PLC Code > Options.

Tip

• In addition to configuring parameters for the Simulink PLC Coder model, you can also
use this dialog box to generate Structured Text code and test bench code for the
Subsystem block.

• Certain options are target-specific and are displayed based on the selection for Target
IDE.

See Also

“Prepare Model for Structured Text Generation” on page 1-3

“Generate Structured Text from the Model Window” on page 1-11

 PLC Coder: General

12-3

Target IDE
Select the target IDE for which you want to generate code. This option is available on the
PLC Code Generation pane in the Configuration Parameters dialog box.

The default Target IDE list shows the full set of supported targets. See “Show Full Target
List” on page 12-6.

To see a reduced subset of targets, disable the option Show full target list. To customize
this list and specify IDEs that you use more frequently, use the plccoderpref function.

For version numbers of supported IDEs, see “Supported IDE Platforms”.

Settings

Default: 3S CoDeSys 2.3

3S CoDeSys 2.3
Generates Structured Text (IEC 61131-3) code for 3S-Smart Software Solutions
CoDeSys Version 2.3.

3S CoDeSys 3.3
Generates Structured Text code in PLCopen XML for 3S-Smart Software Solutions
CoDeSys Version 3.3.

3S CoDeSys 3.5
Generates Structured Text code in PLCopen XML for 3S-Smart Software Solutions
CoDeSys Version 3.5.

B&R Automation Studio 3.0
Generates Structured Text code for B&R Automation Studio 3.0.

B&R Automation Studio 4.0
Generates Structured Text code for B&R Automation Studio 4.0.

Beckhoff TwinCAT 2.11
Generates Structured Text code for Beckhoff TwinCAT 2.11 software.

Beckhoff TwinCAT 3
Generates Structured Text code for Beckhoff TwinCAT 3 software.

KW-Software MULTIPROG 5.0
Generates Structured Text code in PLCopen XML for PHOENIX CONTACT (previously
KW) Software MULTIPROG 5.0 or 5.50.

12 Configuration Parameters for Simulink PLC Coder Models

12-4

Phoenix Contact PC WORX 6.0
Generates Structured Text code in PLCopen XML for Phoenix Contact PC WORX 6.0.

Rockwell RSLogix 5000: AOI
Generates Structured Text code for Rockwell Automation RSLogix 5000 using Add-On
Instruction (AOI) constructs.

Rockwell RSLogix 5000: Routine
Generates Structured Text code for Rockwell Automation RSLogix 5000 routine
constructs.

Rockwell Studio 5000: AOI
Generates Structured Text code for Rockwell Automation Studio 5000 Logix Designer
using Add-On Instruction (AOI) constructs.

Rockwell Studio 5000: Routine
Generates Structured Text code for Rockwell Automation Studio 5000 Logix Designer
routine constructs.

Siemens SIMATIC Step 7
Generates Structured Text code for Siemens SIMATIC STEP 7.

Siemens TIA Portal
Generates Structured Text code for Siemens TIA Portal.

Siemens TIA Portal: Double Precision
Generates Structured Text code for Siemens TIA Portal. The code uses LREAL type for
double data type in the model and can be used on Siemens PLC devices that support
the LREAL type.

Generic
Generates a pure Structured Text file. If the target IDE that you want is not available
for the Simulink PLC Coder product, consider generating and downloading a generic
Structured Text file.

PLCopen XML
Generates Structured Text code formatted using PLCopen XML standard.

Rexroth Indraworks
Generates Structured Text code for Rexroth IndraWorks version 13V12 IDE.

OMRON Sysmac Studio
Generates Structured Text code for OMRON® Sysmac® Studio Version 1.04, 1.05, or
1.09.

 PLC Coder: General

12-5

Tips

• Rockwell Automation RSLogix 5000 routines represent the model hierarchy using
hierarchical user-defined types (UDTs). UDT types preserve model hierarchy in the
generated code.

• The coder generates code for reusable subsystems as separate routine instances.
These subsystems access instance data in program tag fields.

Command-Line Information
Parameter: PLC_TargetIDE
Type: string
Value: 'codesys23' | 'codesys33' | 'codesys35' | 'rslogix5000' |
'rslogix5000_routine' | 'studio5000' | 'studio5000_routine' |
'brautomation30' | 'brautomation40' | 'multiprog50' | 'pcworx60' | 'step7'
| 'plcopen' | 'twincat211' | 'twincat3' | 'generic' | 'indraworks' | 'omron' |
'tiaportal' | 'tiaportal_double'
Default: 'codesys23'

See Also

“Generate Structured Text from the Model Window” on page 1-11

Show Full Target List
View the full list of supported target IDEs in the Target IDE drop-down list. For more
information, see“Target IDE” on page 12-4. This option is available on the PLC Code
Generation pane in the Configuration Parameters dialog box.

Settings

Default: On

 On
The Target IDE list displays the full set of supported IDEs. For more information, see
“Supported IDE Platforms”.

 Off
The Target IDE list displays only the more commonly used IDEs. The default subset
contains the following IDEs:

12 Configuration Parameters for Simulink PLC Coder Models

12-6

• codesys23 — 3S-Smart Software Solutions CoDeSys Version 2.3 (default) target
IDE

• studio5000 — Rockwell Automation Studio 5000 Logix Designer target IDE for
AOI format

• step7 — Siemens SIMATIC STEP 7 target IDE
• omron — OMRON Sysmac Studio
• plcopen — PLCopen XML target IDE

You can customize the entries in the reduced Target IDE list by using the
plccoderpref function.

Command-Line Information
Parameter: PLC_ShowFullTargetList
Type: string
Value: 'on' | 'off'
Default: 'on'

You can change the contents of the reduced Target IDE list using the plccoderpref
function. See plccoderpref.

Target IDE Path
Specify the target IDE installation path. The path already specified is the default
installation path for the target IDE. Change this path if your IDE is installed in a different
location. This option is available on the PLC Code Generation pane in the Configuration
Parameters dialog box.

Settings

Default: C:\Program Files\3S Software

C:\Program Files\3S Software
Default installation path for 3S-Smart Software Solutions CoDeSys software Version
2.3.

C:\Program Files\3S CoDeSys
Default installation path for 3S-Smart Software Solutions CoDeSys software Version
3.3 and 3.5.

 PLC Coder: General

12-7

C:\Program Files\BrAutomation
Default installation path for B&R Automation Studio 3.0 and 4.0 software.

C:\TwinCAT
Default installation path for Beckhoff TwinCAT 2.11 and 3 software.

C:\Program Files\KW-Software\MULTIPROG 5.0
Default installation path for PHOENIX CONTACT (previously KW) Software
MULTIPROG 5.0 software. For MULTIPROG 5.50, the installation path may be
different, change accordingly.

C:\Program Files\Phoenix Contact\Software Suite 150
Default installation path for Phoenix Contact PC WORX 6.0 software.

C:\Program Files\Rockwell Software
Default installation path for Rockwell Automation RSLogix 5000 software.

C:\Program Files\Siemens
Default installation path for Siemens SIMATIC STEP 7 5.4 software.

C:\Program Files\Siemens\Automation
Default installation path for Siemens TIA Portal software.

Tips

• When you change the Target IDE value, the value of this parameter changes.
• If you right-click the Subsystem block, the PLC Code > Generate and Import Code

for Subsystem command uses this value to import generated code.
• If your target IDE installation is standard, do not edit this parameter. Leave it as the

default value.
• If your target IDE installation is nonstandard, edit this value to specify the actual

installation path.
• If you change the path and click Apply, the changed path remains for that target IDE

for other models and between MATLAB sessions. To reinstate the factory default, use
the command:

plccoderpref('plctargetidepaths','default')

Command-Line Information

See plccoderpref.

12 Configuration Parameters for Simulink PLC Coder Models

12-8

See Also

“Import Structured Text Code Automatically” on page 1-21

Code Output Directory
Enter a path to the target folder into which code is generated. This option is available on
the PLC Code Generation pane in the Configuration Parameters dialog box.

Settings

Default: plcsrc subfolder in your working folder

Command-Line Information
Parameter: PLC_OutputDir
Type: string
Value: string
Default: 'plcsrc'

Tips

• If the target folder path is empty, a default value of ./plcsrc is used as the Code
Output Directory.

• If you want to generate code in the current folder use . as the output directory.
• The Code Output Directory can have the same name as your current working folder.

See Also

“Generate Structured Text from the Model Window” on page 1-11

Generate Testbench for Subsystem
Specify the generation of test bench code for the subsystem. This option is available on
the PLC Code Generation pane in the Configuration Parameters dialog box.

Settings

Default: off

 PLC Coder: General

12-9

 On
Enables generation of test bench code for subsystem.

Disables generation of test bench code for subsystems.

Command-Line Information
Parameter: PLC_GenerateTestbench
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Generate Structured Text from the Model Window” on page 1-11

Include Testbench Diagnostic Code
Specify the generation of test bench code with additional diagnostic information that will
help you identify output variables causing test bench failures. This option is available on
the PLC Code Generation pane in the Configuration Parameters dialog box. To enable
this parameter, you must select the Generate testbench for subsystem option

Settings

Default: off

 On
Enables generation of test bench code with additional diagnostic information.

Disables generation of test bench code with additional diagnostic information.

Command-Line Information
Parameter: PLC_GenerateTestbenchDiagCode
Type: string
Value: 'on' | 'off'
Default: 'off'

12 Configuration Parameters for Simulink PLC Coder Models

12-10

See Also

“Generate Structured Text from the Model Window” on page 1-11

Generate Functions Instead of Function Block
Use this option to control whether the generated Structured Text code contains
Function instead of Function Block. This option is available for only the Phoenix
Contact PC WORX or the PHOENIX CONTACT (previously KW) Software MULTIPROG
target. There are certain cases where you may not be able to generate code with
Function instead of Function Block. For example, if your Simulink subsystem or
MATLAB Function block has internal state or persistent variables. In such cases, the
software issues a diagnostic warning.

This option is available on the PLC Code Generation pane in the Configuration
Parameters dialog box, when the Target IDE is set to Phoenix Contact PC WORX 6.0
or KW-Software MULTIPROG 5.0.

Settings

Default: off

 On
The generated Structured Text code contains Function instead of Function Block
where possible.

 Off
Switch to the default behavior of the software.

Command-Line Information
Parameter: PLC_EmitAsPureFunctions
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Generate Structured Text from the Model Window” on page 1-11

 PLC Coder: General

12-11

Suppress Auto-Generated Data Types
Use this option to control whether the generated Structured Text code contains auto-
generated data types for array types. This option is available for only the Phoenix Contact
PC WORX or the PHOENIX CONTACT (previously KW) Software MULTIPROG target.

This option is available on the PLC Code Generation pane in the Configuration
Parameters dialog box, when the Target IDE is set to Phoenix Contact PC WORX 6.0
or KW-Software MULTIPROG 5.0.

Settings

Default: off

 On
The software automatically generates named types for array types in your Simulink
model.

 Off
Switch to the default behavior of the software.

Command-Line Information
Parameter: PLC_SuppressAutoGenType
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Generate Structured Text from the Model Window” on page 1-11

Emit Datatype Worksheet Tags for PCWorx
Use this option to control whether datatypeWorksheet tags are represented in code
generated for Phoenix Contact PC WORX target. This option allows you to have finer
control and generate multiple datatypeWorksheet definitions.

This option is available on the PLC Code Generation pane in the Configuration
Parameters dialog box, when the Target IDE is set to Phoenix Contact PC WORX
6.0.

12 Configuration Parameters for Simulink PLC Coder Models

12-12

Settings

Default: off

 On
The datatypeWorksheet tags are marked as separate tags in the generated code.

 Off
No separate datatypeWorksheet tags are in the generated code.

Command-Line Information
Parameter: PLC_EmitDatatypeWorkSheet
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Generate Structured Text from the Model Window” on page 1-11

Aggressively Inline Structured Text Function Calls
Using this option, you can control inlining of Structured Text function calls for Rockwell
Automation targets. By default, the software attempts to inline only math functions where
possible. With this option, the software aggressively inlines all function calls so that the
generated code has less number of Function blocks.

This option is available on the PLC Code Generation pane in the Configuration
Parameters dialog box, when the Target IDE is set to Rockwell Automation targets such
as Rockwell Studio 5000: AOI, Rockwell Studio 5000: Routine, Rockwell
RSLogix 5000: AOI, or Rockwell RSLogix 5000: Routine.

Settings

Default: off

 On
Aggressively inlines Structured Text function calls for RSLogix IDE.

 PLC Coder: General

12-13

 Off
Reverts to its default behavior and inlines only math function calls in the generated
code.

Command-Line Information

Parameter:PLC_EnableAggressiveInlining
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

• “Generate Structured Text from the Model Window” on page 1-11
• “Generated Code Structure for Simple Simulink Subsystems” on page 2-2

12 Configuration Parameters for Simulink PLC Coder Models

12-14

PLC Coder: Comments

In this section...
“Comments Overview” on page 12-16
“Include Comments” on page 12-16
“Include Block Description” on page 12-17
“Simulink Block / Stateflow Object Comments” on page 12-17
“Show Eliminated Blocks” on page 12-18

 PLC Coder: Comments

12-15

Comments Overview
Control the comments that the Simulink PLC Coder software automatically creates and
inserts into the generated code.

See Also

“Generate Structured Text from the Model Window” on page 1-11

Include Comments
Specify which comments are in generated files. This option is available on the PLC Code
Generation > Comments pane in the Configuration Parameters dialog box.

Settings

Default: on

 On
Places comments in the generated files based on the selections in the Auto
generated comments pane.

If you create links to requirements documents from your model using the Simulink
Requirements software, the links also appear in generated code comments.

 Off
Omits comments from the generated files.

Command-Line Information
Parameter: PLC_RTWGenerateComments
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also

“Generate Structured Text from the Model Window” on page 1-11

12 Configuration Parameters for Simulink PLC Coder Models

12-16

Include Block Description
Specify which block description comments are in generated files. This option is available
on the PLC Code Generation > Comments pane in the Configuration Parameters dialog
box.

Settings

Default: on

 On
Places comments in the generated files based on the contents of the block properties
General tab.

 Off
Omits block descriptions from the generated files.

Command-Line Information
Parameter: PLC_PLCEnableBlockDescription
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also

• “Propagate Block Descriptions to Code Comments” on page 1-16
• “Generate Structured Text from the Model Window” on page 1-11

Simulink Block / Stateflow Object Comments
Specify whether to insert Simulink block and Stateflow object comments. This option is
available on the PLC Code Generation > Comments pane in the Configuration
Parameters dialog box.

Settings

Default: on

 PLC Coder: Comments

12-17

 On
Inserts automatically generated comments that describe block code and objects. The
comments precede that code in the generated file.

 Off
Suppresses comments.

Command-Line Information
Parameter: PLC_RTWSimulinkBlockComments
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also

“Generate Structured Text from the Model Window” on page 1-11

Show Eliminated Blocks
Specify whether to insert eliminated block comments. This option is available on the PLC
Code Generation > Comments pane in the Configuration Parameters dialog box.

Settings

Default: off

 On
Inserts statements in the generated code from blocks eliminated as the result of
optimizations (such as parameter inlining).

 Off
Suppresses statements.

Command-Line Information
Parameter: PLC_RTWShowEliminatedStatement
Type: string
Value: 'on' | 'off'
Default: 'off'

12 Configuration Parameters for Simulink PLC Coder Models

12-18

See Also

“Generate Structured Text from the Model Window” on page 1-11

 PLC Coder: Comments

12-19

PLC Coder: Optimization

In this section...
“Optimization Overview” on page 12-21
“Default Parameter Behavior” on page 12-21
“Signal Storage Reuse” on page 12-22
“Remove Code from Floating-Point to Integer Conversions That Wraps Out-Of-Range
Values” on page 12-24
“Generate Reusable Code” on page 12-24

12 Configuration Parameters for Simulink PLC Coder Models

12-20

In this section...
“Inline Named Constants” on page 12-26
“Reuse MATLAB Function Block Variables” on page 12-27
“Loop Unrolling Threshold” on page 12-27

Optimization Overview
Select the code generation optimization settings.

See Also

“Generate Structured Text from the Model Window” on page 1-11

Default Parameter Behavior
Transform numeric block parameters into constant inlined values in the generated code.
This option is available on the PLC Code Generation > Optimization pane in the
Configuration Parameters dialog box.

Description

Transform numeric block parameters into constant inlined values in the generated code.

Category: Optimization

Settings

Default: Tunable for GRT targets | Inlined for ERT targets

Inlined
Set Default parameter behavior to Inlined to reduce global RAM usage and
increase efficiency of the generated code. The code does not allocate memory to
represent numeric block parameters such as the Gain parameter of a Gain block.
Instead, the code inlines the literal numeric values of these block parameters.

Tunable
Set Default parameter behavior to Tunable to enable tunability of numeric block
parameters in the generated code. The code represents numeric block parameters
and variables that use the storage class Auto, including numeric MATLAB variables,
as tunable fields of a global parameters structure.

 PLC Coder: Optimization

12-21

Tips

• Whether you set Default parameter behavior to Inlined or to Tunable, create
parameter data objects to preserve tunability for block parameters. For more
information, see “Create Tunable Calibration Parameter in the Generated Code”
(Simulink Coder).

• When you switch from a system target file that is not ERT-based to one that is ERT-
based, Default parameter behavior sets to Inlined by default. However, you can
change the setting of Default parameter behavior later.

• When a top model uses referenced models, or if a model is referenced by another
model:

• All referenced models must set Default parameter behavior to Inlined if the
top model has Default parameter behavior set to Inlined.

• The top model can specify Default parameter behavior as Tunable or Inlined.
• If your model contains an Environment Controller block, you can suppress code

generation for the branch connected to the Sim port if you set Default parameter
behavior to Inlined and the branch does not contain external signals.

Command-Line Information

Parameter:PLC_PLCEnableVarReuse
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also

“Generate Structured Text from the Model Window” on page 1-11

Signal Storage Reuse
Reuse signal memory. This option is available on the PLC Code Generation >
Optimization pane in the Configuration Parameters dialog box.

Settings

Default: on

12 Configuration Parameters for Simulink PLC Coder Models

12-22

 On
Reuses memory buffers allocated to store block input and output signals, reducing the
memory requirement of your real-time program.

 Off
Allocates a separate memory buffer for each block's outputs. This allocation makes
block outputs global and unique, which in many cases significantly increases RAM
and ROM usage.

Tips

• This option applies only to signals with storage class Auto.
• Signal storage reuse can occur among only signals that have the same data type.
• Clearing this option can substantially increase the amount of memory required to

simulate large models.
• Clear this option if you want to:

• Debug a C-MEX S-function.
• Use a Floating Scope or a Display block with the Floating display option selected

to inspect signals in a model that you are debugging.
• If you select Signal storage reuse and attempt to use a Floating Scope or floating

Display block to display a signal whose buffer has been reused, an error dialog box
opens.

Command-Line Information

Parameter:PLC_PLCEnableVarReuse
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also

“Generate Structured Text from the Model Window” on page 1-11

 PLC Coder: Optimization

12-23

Remove Code from Floating-Point to Integer Conversions That
Wraps Out-Of-Range Values
Enable code removal for efficient casts. This option is available on the PLC Code
Generation > Optimization pane in the Configuration Parameters dialog box.

Settings

Default: on

 On
Removes code from floating-point to integer conversions.

 Off
Does not remove code from floating-point to integer conversions.

Tips

Use this parameter to optimize code generation.

Command-Line Information

Parameter: PLC_PLCEnableEfficientCast
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also

“Generate Structured Text from the Model Window” on page 1-11

Generate Reusable Code
Using this option, you can generate better reusable code for reusable subsystems. For
instance, if your model contains multiple instances of the same subsystem and some
instances have constant inputs, by default, the generated code contains separate function
blocks for each instance. If you select this option, the software does not consider whether
the inputs to the subsystem are constant and generates one function block for the
multiple instances.

12 Configuration Parameters for Simulink PLC Coder Models

12-24

This option is available on the PLC Code Generation > Optimization pane in the
Configuration Parameters dialog box.

Settings

Default: off

 On
Generates better reusable code for reusable subsystems.

 Off
Reverts to its default behavior. Instead of a single reusable function block, the
software generates separate function blocks for individual instances of a reusable
subsystem because of certain differences in their inputs.

Tips

• If you find multiple function blocks in your generated code for multiple instances of
the same subsystem, select this option. The software performs better identification of
whether two instances of a subsystem are actually the same and whether it can
combine the multiple blocks into one reusable function block.

• If different instances of a subsystem have different values of a block parameter, you
cannot generate reusable code. Clear this option or use the same block parameter for
all instances.

• Despite selecting this option, if you do not see reusable code for different instances of
a subsystem, you can determine the reason. To determine if two reusable subsystems
are identical, the code generator internally uses a checksum value. You can compare
the checksum values for two instances of a subsystem and investigate why they are
not identical.

To get the checksum values for the two instances that you expect to be identical, use
the function Simulink.SubSystem.getChecksum. If the checksum values are
different, investigate the checksum details to see why the values are not identical.

Command-Line Information

Parameter:PLC_GenerateReusableCode
Type: string
Value: 'on' | 'off'
Default: 'off'

 PLC Coder: Optimization

12-25

See Also

• “Generate Structured Text from the Model Window” on page 1-11
• “Generated Code Structure for Reusable Subsystems” on page 2-4

Inline Named Constants
Using this option, you can control inlining of global named constants. By default, the
generated code contains named ssMethodType constants for internal states or other
Simulink semantics. If you select this option, the software replaces the named constants
with its integer value.

This option is available on the PLC Code Generation > Optimization pane in the
Configuration Parameters dialog box.

Settings

Default: off

 On
Inlines named constants.

 Off
Reverts to its default behavior and uses named constants in the generated code.

Command-Line Information

Parameter:PLC_InlineNamedConstant
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

• “Generate Structured Text from the Model Window” on page 1-11
• “Generated Code Structure for Simple Simulink Subsystems” on page 2-2

12 Configuration Parameters for Simulink PLC Coder Models

12-26

Reuse MATLAB Function Block Variables
You can use this option to enable reuse of MATLAB function block variables in the
generated code.

This option is available on the PLC Code Generation > Optimization pane in the
Configuration Parameters dialog box.

Settings

Default: off

 On
Generates code that reuses MATLAB Function block variables where appropriate.

 Off
Reverts to its default behavior and does not reuse variables in the generated code.

Command-Line Information

Parameter:PLC_ReuseMLFcnVariable
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

• “Generate Structured Text from the Model Window” on page 1-11
• “Generated Code Structure for MATLAB Function Block” on page 2-14

Loop Unrolling Threshold
Specify the minimum signal or parameter width for which a for loop is generated. This
option is available on the PLC Code Generation > Optimization pane in the
Configuration Parameters dialog box.

Settings

Default: 5

 PLC Coder: Optimization

12-27

Specify the array size at which the code generator begins to use a for loop instead of
separate assignment statements to assign values to the elements of a signal or parameter
array.

When the loops are perfectly nested loops, the code generator uses a for loop if the
product of the loop counts for all loops in the perfect loop nest is greater than or equal to
this threshold.

Command-Line Information

Parameter: PLC_RollThreshold
Type: string
Value: any valid value
Default: '5'

See Also

“Generate Structured Text from the Model Window” on page 1-11

12 Configuration Parameters for Simulink PLC Coder Models

12-28

PLC Coder: Identifiers

In this section...
“Identifiers Overview” on page 12-30
“Use Subsystem Instance Name as Function Block Instance Name” on page 12-30
“Override Target Default Maximum Identifier Length” on page 12-31
“Maximum Identifier Length” on page 12-32

 PLC Coder: Identifiers

12-29

In this section...
“Override Target Default enum Name Behavior” on page 12-32
“Remove Top-level Subsystem ssmethod Type” on page 12-33
“Generate Logging Code” on page 12-34
“Use the Same Reserved Names as Simulation Target” on page 12-35
“Reserved Names” on page 12-35
“Externally Defined Identifiers” on page 12-36
“Preserve Alias Type Names for Data Types” on page 12-37

Identifiers Overview
Select the automatically generated identifier naming rules.

See Also

“Generate Structured Text from the Model Window” on page 1-11

Use Subsystem Instance Name as Function Block Instance
Name
Specify how you want the software to name the Function block instances it generates for
the subsystem. When you select this option, the software uses the subsystem instance
name as the name of the Function blocks in the generated code. By default, the software
generates index-based instance names.

This option is available on the PLC Code Generation > Identifiers pane in the
Configuration Parameters dialog box.

Settings

Default: off

 On
Uses the subsystem instance name as the name of the Function block instances in the
generated code.

12 Configuration Parameters for Simulink PLC Coder Models

12-30

 Off
Uses auto-generated index-based instance names for the Function blocks in the
generated code.

Command-Line Information
Parameter: PLC_FBUseSubsystemInstanceName
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Generate Structured Text from the Model Window” on page 1-11

Override Target Default Maximum Identifier Length
If your custom target IDE version supports long name identifiers, you can use this option
along with the Maximum identifier length to specify the maximum number of
characters in the generated function, type definition, and variable names. By default, the
software complies with the maximum identifier length of standard versions of the target
IDE and ignores unsupported values specified in the Maximum identifier length.

This option is available on the PLC Code Generation > Identifiers pane in the
Configuration Parameters dialog box.

Settings

Default: off

 On
Override target default maximum identifier length in the generated code.

 Off
The generated code uses the default identifier length of the target IDE.

Command-Line Information
Parameter: PLC_OverrideDefaultNameLength
Type: string
Value: 'on' | 'off'

 PLC Coder: Identifiers

12-31

Default: 'off'

See Also

“Generate Structured Text from the Model Window” on page 1-11

Maximum Identifier Length
Specify the maximum number of characters in generated function, type definition, and
variable names. This option is available on the PLC Code Generation > Identifiers pane
in the Configuration Parameters dialog box.

Settings

Default: 31

Minimum: 31

Maximum: 256

You can use this parameter to limit the number of characters in function, type definition,
and variable names. Many target IDEs have their own restrictions for these names.
Simulink PLC Coder complies with target IDE limitations.

Command-Line Information
Parameter: PLC_RTWMaxIdLength
Type: int
Value: 31 to 256
Default: 31

See Also

“Generate Structured Text from the Model Window” on page 1-11

Override Target Default enum Name Behavior
Use this option to enable enum names to be used as the identifier names instead of enum
values. The PLC target IDE must support enum type.

This option is available on the PLC Code Generation > Identifiers pane in the
Configuration Parameters dialog box.

12 Configuration Parameters for Simulink PLC Coder Models

12-32

Settings

Default: off

 On
Override target default enum behavior and always have enum names instead of enum
values.

 Off
The generated code uses the enum behavior of the target IDE.

Command-Line Information
Parameter: PLC_GenerateEnumSymbolicName
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Generate Structured Text from the Model Window” on page 1-11

Remove Top-level Subsystem ssmethod Type
Use this option to remove the ssmethod type from the top-level subsystem argument
interface. When this option is enabled, the software removes the ssmethod type and
converts the subsystem initialization code from switch case statement to conditional if
statement. As a result, the generated code has the same interface as the model
subsystem.

This option is available on the PLC Code Generation > Identifiers pane in the
Configuration Parameters dialog box.

Settings

Default: off

 On
Remove top level function block ssmethod type in generated code.

 PLC Coder: Identifiers

12-33

 Off
Generated code contains ssmethod type Function block and switch case statements.

Command-Line Information
Parameter: PLC_RemoveTopFBSSMethodType
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Generate Structured Text from the Model Window” on page 1-11

Generate Logging Code
With this option, you can generate code with logging instrumentation to collect run-time
data on supported PLC targets. The PLC target IDEs must have support for inout
variables. For Rockwell Automation targets, you can set up an Open Platform
Communications (OPC) server and use the Simulation Data Inspector (SDI) in Simulink to
visualize and monitor the logging data.

This option is available on the PLC Code Generation > Identifiers pane in the
Configuration Parameters dialog box.

Settings

Default: off

 On
Generate Function block logging code for supported targets.

 Off
No logging instrumentation is included in the generated code.

Command-Line Information
Parameter: PLC_GenerateLoggingCode
Type: string
Value: 'on' | 'off'
Default: 'off'

12 Configuration Parameters for Simulink PLC Coder Models

12-34

See Also

“Generate Structured Text from the Model Window” on page 1-11

Use the Same Reserved Names as Simulation Target
Specify whether to use the same reserved names as those specified in the Reserved
names field of the Simulation Target pane in the Configuration Parameters dialog box.
This option is available on the PLC Code Generation > Identifiers pane in the
Configuration Parameters dialog box.

Settings

Default: off

 On
Uses the same reserved names as those specified in the Reserved names filed of the
Simulation Target pane in the Configuration Parameters dialog box.

 Off
Does not use the same reserved names as those specified in the Simulation Target >
Identifiers pane pane.

Command-Line Information
Parameter: PLC_RTWUseSimReservedNames
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Generate Structured Text from the Model Window” on page 1-11

Reserved Names
Enter the names of variables or functions in the generated code that you do not want to
be used. This option is available on the PLC Code Generation > Identifiers pane in the
Configuration Parameters dialog box.

 PLC Coder: Identifiers

12-35

Settings

Default: ()

Changes the names of variables or functions in the generated code to avoid name
conflicts with identifiers in custom code. Reserved names must be fewer than 256
characters in length.

Tips

• Start each reserved name with a letter or an underscore.
• Each reserved name must contain only letters, numbers, or underscores.
• Separate the reserved names by using commas or spaces.

Command-Line Information
Parameter: PLC_RTWReservedNames
Type: string
Value: string
Default: ''

See Also

“Generate Structured Text from the Model Window” on page 1-11

Externally Defined Identifiers
Specify the names of identifiers for which you want to suppress definitions. This option is
available on the PLC Code Generation > Identifiers pane in the Configuration
Parameters dialog box.

Settings

Default: ()

Suppresses the definition of identifiers, such as those for function blocks, variables,
constants, and user types in the generated code. This suppression allows the generated
code to refer to these identifiers. When you import the generated code into the PLC IDE,
you must provide these definitions.

12 Configuration Parameters for Simulink PLC Coder Models

12-36

Tips

• Start each name with a letter or an underscore.
• Each name must contain only letters, numbers, or underscores.
• Separate the names by using spaces or commas.

Command-Line Information
Parameter: PLC_ExternalDefinedNames
Type: string
Value: string
Default: ''

See Also

• “Generate Structured Text from the Model Window” on page 1-11
• “Integrate Externally Defined Identifiers” on page 8-2
• Integrating User Defined Function Blocks, Data Types, and Global

Variables into Generated Structured Text

Preserve Alias Type Names for Data Types
Specify that the generated code must preserve alias data types from your model. This
option is available on the PLC Code Generation > Identifiers pane in the Configuration
Parameters dialog box.

Using the Simulink.AliasType class, you can create an alias for a built-in Simulink
data type. If you assign an alias data type to signals and parameters in your model, when
you use this option, the generated code uses your alias data type to define variables
corresponding to the signals and parameters.

For instance, you can create an alias SAFEBOOL from the base data type boolean. If you
assign the type SAFEBOOL to signals and parameters in your model, the variables in the
generated code corresponding to those signals and parameters also have the type
SAFEBOOL. Using this alias type SAFEBOOL, you can conform to PLCopen safety
specifications that suggest using safe data types for differentiation between safety-
relevant and standard signals.

Settings

Default: off

 PLC Coder: Identifiers

12-37

matlab:plcdemo_external_symbols
matlab:plcdemo_external_symbols

 On
The generated code preserves alias data types from your model.

For your generated code to be successfully imported to your target IDE, the IDE must
support your alias names.

 Off
The generated code does not preserve alias types from your model. Instead, the base
type of the Simulink.AliasType class determines the variable data type in
generated code.

Tips

The alias that you define for a Simulink type must have the same semantic meaning as the
base Simulink type. It must not be a data type already supported in Structured Text and
semantically different from the base Simulink type. For instance, WORD is a data type
supported in Structured Text but is semantically different from an integer type. If you
define an alias WORD for a Simulink built-in integer type, for instance uint16, and
preserve the alias name, the type WORD that appears in your generated code is used
semantically as a WORD and not as an INT. The generated code has a different meaning
from the semantics of the model.

Command-Line Information
Parameter: PLC_PreserveAliasType
Type: string
Value: 'on' | 'off'
Default: 'off'

12 Configuration Parameters for Simulink PLC Coder Models

12-38

PLC Coder: Report

In this section...
“Report Overview” on page 12-40
“Generate Traceability Report” on page 12-40
“Generate Model Web View” on page 12-41
“Open Report Automatically” on page 12-41

 PLC Coder: Report

12-39

Report Overview
After code generation, specify whether a report must be produced. Control the
appearance and contents of the report.

The code generation report shows a mapping between Simulink model objects and
locations in the generated code. The report also shows static code metrics about files,
global variables, and function blocks.

See Also

“Generate Structured Text from the Model Window” on page 1-11

Generate Traceability Report
Specify whether to create a code generation report. This option is available on the PLC
Code Generation > Report pane in the Configuration Parameters dialog box.

Settings

Default: on

 On
Creates code generation report as an HTML file.

 Off
Suppresses creation of code generation report.

Command-Line Information
Parameter: PLC_GenerateReport
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also

“Generate Structured Text from the Model Window” on page 1-11

12 Configuration Parameters for Simulink PLC Coder Models

12-40

Generate Model Web View
To navigate between the code and the model within the same window, include the model
web view in the code generation report. This option is available on the PLC Code
Generation > Report pane in the Configuration Parameters dialog box.

You can share your model and generated code outside of the MATLAB environment. You
must have a Simulink Report Generator to include a Web view (Simulink Report
Generator) of the model in the code generation report.

Settings

Default: Off

 On
Includes model Web view in the code generation report.

 Off
Omits model Web view in the code generation report.

Command-Line Information
Parameter: PLC_GenerateWebView
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Generate Structured Text from the Model Window” on page 1-11

Open Report Automatically
Specify whether to open the code generation report automatically. This option is available
on the PLC Code Generation > Report pane in the Configuration Parameters dialog
box.

Settings

Default: off

 PLC Coder: Report

12-41

 On
Opens the code generation report as an HTML file.

 Off
Suppresses opening of the code generation report.

Command-Line Information
Parameter: PLC_LaunchReport
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Generate Structured Text from the Model Window” on page 1-11

12 Configuration Parameters for Simulink PLC Coder Models

12-42

External Mode

• “External Mode Logging” on page 13-2
• “Generate Structured Text Code with Logging Instrumentation” on page 13-3
• “Use the Simulation Data Inspector to Visualize and Monitor the Logging Data”

on page 13-7

13

External Mode Logging
With external mode logging, you can generate code from Simulink models with logging
instrumentation to collect run-time data on PLC targets. You can enable this feature by
using Generate logging code option in the configuration parameters or by using the
PLC_GenerateLoggingCode command-line property. The PLC target IDEs must have
support for inout variables. You can generate logging code for one of the following
target PLC IDEs:

• 3S-Smart Software Solutions CoDeSys Version 2.3
• 3S-Smart Software Solutions CoDeSys Version 3.5
• Rockwell Automation RSLogix 5000
• Rockwell Automation Studio 5000
• Beckhoff TwinCAT 2.11
• Beckhoff TwinCAT 3
• Generic
• PLCopen XML
• Rexroth IndraWorks
• OMRON Sysmac Studio

For Rockwell Automation targets, you can set up an Open Platform Communications
(OPC) server and use the Simulation Data Inspector in Simulink to visualize and monitor
the logging data. The OPC Toolbox™ is required to run the external mode visualization.

See Also

More About
• “Generate Structured Text Code with Logging Instrumentation” on page 13-3
• “Use the Simulation Data Inspector to Visualize and Monitor the Logging Data” on

page 13-7

13 External Mode

13-2

Generate Structured Text Code with Logging
Instrumentation

This topic assumes that you have generated Structured Text code from a Simulink model.
If you have not yet done so, see “Generate Structured Text from the Model Window” on
page 1-11.

The example in this topic shows generated code for the Rockwell Automation Studio 5000
IDE. Generated code for other IDE platforms looks different.

1 Create a Simulink model ext_demo1.slx containing a top-level subsystem with two
child subsystems S1, S2, a MATLAB Function block and a Stateflowchart.

2 The S1, S2 blocks are identical and contain simple feedback loop.The Stateflow chart
contains a simple state machine.

 Generate Structured Text Code with Logging Instrumentation

13-3

3 The MATLAB function block implements the following code:

function y = fcn
persistent i;

if isempty(i)
 i=0;
end

if (i>20)
 i = 0;
else
 i=i+1;
end

y = sin(pi*i/10);

13 External Mode

13-4

4 Select the top-level subsystem and open the configuration parameters window. On
the PLC Code Generation pane, select the Target IDE as Rockwell Studio
5000: AOI. On the Identifiers pane, select Generate logging code.

5 In the model, select the top subsystem block, right-click, and choose PLC
Code>Generate Code for Subsystem.

This operation generates L5X AOI code for the top subsystem block and the children
S1, S2, MATLAB function, and Stateflow chart blocks. In the code folder, it also
generates plc_log_data.mat which has the logging data information.

 Generate Structured Text Code with Logging Instrumentation

13-5

6 After generating the code, you can download and run the logging code from the PLC
IDE.

See Also

More About
• “External Mode Logging” on page 13-2
• “Use the Simulation Data Inspector to Visualize and Monitor the Logging Data” on

page 13-7

13 External Mode

13-6

Use the Simulation Data Inspector to Visualize and
Monitor the Logging Data

This workflow is supported for Rockwell Automation targets. This workflow shows you
how to set up an Open Platform Communications (OPC) server and use the Simulation
Data Inspector in Simulink to visualize and monitor the logging data.

Set Up and Download Code to the Studio 5000 IDE
The following procedure shows you how to create a Studio 5000 project to import the
generated logging code. You can use a similar procedure to import the generated code
into an existing project.

1 Start the Studio 5000 IDE and create project with the name ext_demo1.
2 Import the generated ext_demo.L5X to the Add-On Instructions tree node of the

project.
3 In the MainProgram node, delete the ladder MainRoutine and create an ST

MainRoutine node.

4 In ST MainRoutine, define the following tags:

Tag Name Tag Type
i0_Subsystem Subsystem
i0_Subsystem_val Subsystem_log
Init BOOL
Y1 REAL
Y2 REAL
Y3 DINT

 Use the Simulation Data Inspector to Visualize and Monitor the Logging Data

13-7

5 The tag definition looks like the following in Studio 5000 IDE, i0_Subsystem tag is
the instance of the top subsystem AOI, the i0_Subsystem_val tag is the log data
with structure type Subsystem_log. Set the initial value of init tag to 1.

6 Double-click MainRoutine tree node and type in the following code. The statement
Subsystem(i0_Subsystem, 23, Y1, Y2, Y3, i0_Subsystem_val) calls the
logging method (ssmethod value=23) to log in data to the i0_Subsystem_val
tag.

7 Compile the project in Studio 5000 IDE, connect, and download to the PLC target.

Configure RSLinx OPC Server
1 Start RSLinx Classic Gateway, select the menu item DDE/OPC->Topic

Configuration.
2 In the resulting pop-up dialog box, create a topic ext_demo1 by using the New

button. Select the target PLC from the PLC list.

3 Click Yes button to update the topic (ext_demo1).

13 External Mode

13-8

4 To verify that the log data is set up on the OPC server, select the menu item Edit-
>Copy DDE/OPC Link. The i0_Subsystem_val tag for log data must be shown on
the RSLinx OPC Server.

Use PLC External Mode Commands to Stream and Display Live
Log Data
After the RSLinx OPC Server is configured, you can use the PLC external mode
commands to connect to the server, stream, and display live logging data on the Simulink
Data Inspector. The log data information is in the plc_log_data.mat file which can be
found in plcsrc folder. You can use the plcdispextmodedata function to display the
contents of the MAT-file. In the MATLAB command, type:

>>cd plcsrc
>>plcdispextmodedata plc_log_data.mat

Log data:
#1: Y1: LREAL
#2: Y2: LREAL
#3: Y3: LREAL
#4: io_Chart.out: DINT
#5: io_Chart.ChartMode: DINT
#6: io_Chart.State_A: BOOL
#7: io_Chart.State_B: BOOL
#8: io_Chart.State_C: BOOL
#9: io_Chart.State_D: BOOL
#10: io_Chart.is_active_c3_Subsystem: USINT
#11: io_MATLABFunction.y: LREAL
#12: io_MATLABFunction.i: LREAL
#13: io_S1.y: LREAL

 Use the Simulation Data Inspector to Visualize and Monitor the Logging Data

13-9

#14: io_S1.UnitDelay_DSTATE: LREAL
#15: i1_S1.y: LREAL
#16: i1_S1.UnitDelay_DSTATE: LREAL

The format for the log data information is index number, name, and type. The log data for
non-top subsystem function block output and state variables are named using the dot
notation to represent the function block instances that own the data. The index and name
of the log data can be used with the plcrunextmode command to specify a subset of log
data for streaming and visualization.

Use the plcrunextmode function to connect to the OPC server and stream log data. For
example, executing plcrunextmode ('localhost', 'studio5000',
'ext_demo1', 'plc_log_data.mat'); command streams live log data for the
example model in to Simulink Data Inspector.

The plcrunextmode command continues to run and stream log data. To exit streaming,
type Ctrl-C in MATLAB to stop.

See Also
plcdispextmodedata | plcrunextmode

More About
• “External Mode Logging” on page 13-2
• “Generate Structured Text Code with Logging Instrumentation” on page 13-3

13 External Mode

13-10

Ladder Diagram Instructions

14

Instructions Supported in Ladder Diagram
The supported ladder diagram instructions are useful while importing the ladder into
Simulink. The instructions can be categorised into two:

• Instructions that are implemented in Simulink using ladder diagram blocks with same
name

• Instructions that are implemented in Simulink using other ladder diagram blocks.

The table lists the instructions that map to blocks in Simulink

L5X Instructions Ladder Model Blocks
ADD ADD Block
AFI AFI Block
AND AND Block
CLR CLR Block
COP COP Block
CTD CTD Block
CTU CTU Block
DIV DIV Block
EQU EQU Block
FBC FBC Block
FLL FLL Block
GEQ GEQ Block
GRT GRT Block
JMP JMP Block
LBL LBL Block
LEQ LEQ Block
LES LES Block
MCR MCR Block
MOV MOV Block
MUL MUL Block

14 Ladder Diagram Instructions

14-2

L5X Instructions Ladder Model Blocks
NCP NCP Block
NEQ NEQ Block
NOT NOT Block
OR OR Block
OTE OTE Block
OTL OTL Block
OTU OTU Block
RES RES Block
RTO RTO Block
SUB SUB Block
TND TND Block
TOF TOF Block
TON TON Block
XIC XIC Block
XIO XIO Block

The special instructions that are implemented using another block in Simulink are:

• JSR instruction is implemented by using a Subroutine block.
• AOI call instruction is implemented by using an Inline AOI block

 Instructions Supported in Ladder Diagram

14-3

Ladder Diagram Blocks

15

Ladder Diagram Blocks
The Ladder Diagram Blocks that are a part of Ladder Diagram Library are listed.

XIC XIO OTE OTL
OTU TON TOF RTO
CTU CTD RES JMP
LBL TND AFI NOP
MCR ADD SUB MUL
DIV FRD CPT AND
OR NOT ONS OSR
OSF CMP NEQ EQU
LEQ GEQ LES GRT
MOV CLR COP FLL
Power Rail Start Power Rail Terminal RungTerminal Junction
Variable Read Variable Write PLC Controller Task
Program Subroutine Function Block (AOI)

15 Ladder Diagram Blocks

15-2

